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Empirical Contribution 

This is a long paper that discusses many topics. This research digest will zero in on the 

unambiguous theoretical predictions and the methods used to test them. 

Major Predictions 

This paper is about the impact of research and design (R&D) by firms on each other. R&D can 

impact other firms through two major channels, which the authors call the technology spillover 

channel and the product market rivalry channel. To illustrate these channels, consider the case of 

three hypothetical firms: BikeCo, eScooter, and DroneCo. 

BikeCo manufactures bikes. eScooter manufactures rechargeable scooters. DroneCo 

manufactures small flying drones. BikeCo and eScooter both compete for the same customer 

base of people interested in convenient urban transportation, but use completely different 

technological approaches (bicycles versus electric scooter). Meanwhile, eScooter and DroneCo 

sell to completely different customer bases but rely on similar underling technologies (better 

batteries and more efficient engines). Suppose each of these companies spends $1 million per 

year on R&D. If either BikeCo or DroneCo doubles its spending on R&D, it will have an impact 

on eScooter, but the impact will differ significantly depending on which firm doubles its 

spending.  

If DroneCo doubles its R&D, the additional advances it makes in battery technology and more 

efficient motors can be readily adapted by eScooter to improve its own product line. If it 

continues to spend $1 million per year on R&D, this spending will generate more innovation than 

before, leading to more profit. Or, eScooter may decide it can reduce its R&D spending and free-

ride on the efforts of DroneCo, obtaining a similar level of innovation with fewer R&D costs, 

again raising its profit. The impact of DroneCo’s R&D on eScooter represents a technology 

spillover, where R&D by a rival firm enhances R&D capacity and raises profit. 

However, if BikeCo doubles its R&D, the ramifications for eScooter are much less positive. 

Suppose BikeCo does R&D on material science to develop cheaper, sturdier and lighter bike 

frames. BikeCo’s advances in material science have little application for scooters, and so 

eScooter’s R&D capacity is unchanged. But it now faces stiffer competition from better bikes, 

and so it may need to reduce its profit margin or perhaps spend more on R&D itself. Either way, 

its profitability is negatively impacted. In this case, the impact of BikeCo’s R&D on eScooter 

represents a product market rivalry spillover, where R&D by a rival firm has no impact on R&D 

capacity but reduces profit. 



The preceding is an extreme example, but the more general point is that R&D by rivals has 

positive and negative effects. The positive effect is via the technology spillover, where firms 

learn from each other and borrow/adapt their ideas. This effect is strongest when firms operate in 

similar technological fields. The negative effect is via the product market rivalry spillover, where 

rival R&D by rival firms makes for tougher competition. This effect is strongest when firms 

compete in similar markets. In most cases firms face a mix of technology and product market 

spillovers from their rivals.  

This paper works hard to separately identify and measure these two channels. Without separately 

identifying these channels, the total impact of rival firms R&D will be understated. Specifically, 

the authors develop a measure of technology spillovers from rival firms that they call 

SPILLTECH, and a measure of product market rivalry spillovers from rival firms that they call 

SPILLSIC (so-called because SIC codes are a common way of defining different industries). 

They compute these measures for a large sample of firms over two decades, and then assess 

whether they are correlated with innovation and profitability in the manner predicted. 

Specifically, they predict, holding all else constant: 

1. SPILLTECH is positively correlated with a patent-based measure of innovation and a 

productivity-based measure of innovation 

2. SPILLSIC is uncorrelated with a patent-based measure of innovation and a productivity-

based measure of innovation 

3. SPILLTECH is positively correlated with profitability 

4. SPILLSIC is negatively correlated with profitability 

Measuring Technological Spillovers 

A key contribution of the paper is to derive a way to measure the extent of technology spillovers 

from rival firms. To motivate their measure of spillovers, let’s imagine a highly simplified and 

unrealistic model of knowledge spillovers. Suppose eScooter employes 10 scientists and 

DroneCo employes 5. These scientists all attend an annual meeting where they will meet all of 

their counterparts in other firms. The 10 scientists of eScooter will meet each of the 5 scientists in 

DroneCo, for a total of 50 meetings. At each of these meetings, there is some probability that a 

DroneCo scientist will divulge a piece of information useful to the eScooter scientist. We call 

this a “knowledge spillover.” To begin, assume these information transfers are only useful if the 

two scientists are working the same technology field (we’ll relax this assumption in a minute). 

How much useful information will DroneCo transfer to eScooter? 

It depends on the share of scientists working in the same field. Suppose the 10 scientists of 

eScooter work in 5 different fields (2 scientists per field), and the 5 scientists of DroneCo work in 

the same 5 fields (1 scientist per field). Then eScooter scientists working in field A (say, battery 

charging technology) only get useful information in the meetings they have with the single 

scientist in DroneCo working in that field. The rest of the meetings are a waste of time. Since 

each of the 10 scientists in eScooter has a single useful meeting with scientists in DroneCo, the 

total spillovers from DroneCo to eScooter are 10.  



Note this is a symmetric exchange. The 5 DroneCo scientists each meet with two eScooter 

scientists in their field and learn two useful pieces of information from them as well, so the total 

spillovers from eScooter to DroneCo are also 10. 

Now, this isn’t realistic, but it captures some useful intuitions. If you have a rival firm that does a 

lot of R&D, you stand to learn a lot from them, especially if they tend to work in the same kinds 

of areas as your own firm. Alternatively, if you do a lot of R&D yourself, you have more 

capacity to absorb knowledge from rivals. 

Bloom, Schankerman and Van Reenen don’t actually have data on the number of scientists 

employed by each firm, broken down by their fields though. Instead, they have data on each 

firm’s total R&D spending and patents. Fortunately, these patents are assigned to 426 different 

technology classes by the US Patent and Trademark Office. For example, class 320 corresponds 

to “Electricity: battery or capacitor charging or discharging.” Bloom, Schankerman, and Van 

Reenen assume the number of researchers working in the field is proportional to R&D spending 

(technically, they construct measures of R&D that include partial contributions from previous 

years) multiplied by the share of patents in the field. So if eScooter spends $1 million per year on 

R&D and 40% of it’s patents belong to class 320 (batteries), then the assume the company spends 

$400,000 per year on battery research. 

Note that the number of information transfers in the illustrative example is given by multiplying 

the number of scientists in every field by the number working in the same field at the other firm, 

and then adding them up. Since Bloom, Schankerman, and Van Reenen are now using estimates 

of R&D spending in each field, if they were to calculate spillovers from DroneCo to eScooter, 

they would take an estimate of R&D eScooter does in every field and multiply it by their 

estimate of R&D DroneCo does in the same field. They do this for all 426 fields and then add up 

the results to obtain the total spillover. 

But there is a problem with this measure. The assumption that knowledge transfer can only occur 

between the same fields is unrealistic; technology fields frequently borrow ideas from each other. 

For example, maybe the next advance in battery technology will come advances in chemical 

processing. So the authors want there to be a non-zero probability that knowledge transfer occurs 

between scientists working in different fields, even if this probability is probably lower than it 

would be if they are in the same field. 

To derive this probability, the authors assume firms do not choose different research fields at 

random. Firms can benefit from internal knowledge transfers across fields too. Since these are a 

good thing for the firm, firms have an incentive to do research on the fields most likely to 

generate knowledge transfers between the different scientists working for them. The authors 

assume that fields that frequently appear together in the same firms are more likely to have 

knowledge flows between them. Specifically, to find the probability a meeting between scientists 

in field A and B have a knowledge transfer, they find the share of patents in every firm that 

belong to fields A and B and take the (uncentered) correlation between these two shares across 

firms. So, for example, if knowing the share of patents in class 320 (batteries) for a firm perfectly 

predicts the share of their patents in class 324 (measuring electricity), then the correlation is 1 and 



a knowledge transfer between the fields is guaranteed. Conversely, if knowing the share of 

patents in class 320 (batteries) for a firm confers no predictive power for class 300 (brush, broom, 

and mop-making), then there is zero correlation between the classes and the probability of a 

knowledge transfer is zero. 

So the actual measure of spillovers between any two firms A and B is derived by adding up the 

product of firm A’s R&D in each field, firm B’s R&D in each field, and the correlation between 

fields. For example, to find the technology spillover from DroneCo to eScooter, the authors start 

with the first technology class (002 - apparel). They multiply their estimate of eScooters’s R&D 

in class 002 by their estimate of DroneCo’s R&D in class 002. Next, they multiply eScooter’s 

R&D in class 002 by DroneCo’s R&D in the next class (oo4 – baths, closets, sinks, spittoons), 

multiplied by the correlation between classes 002 and 004. They repeat this for all 426 fields to 

find the total spillovers from DroneCo to eScooter’s class 002 R&D. Then they do the same for 

the eScooter class 004 R&D, then class 005, and so on until they’ve done all 426 fields for 

eScooter. They add up all these spillovers to compute the total extent of spillovers from DroneCo 

to eScooter. 

Finally, note that DroneCo is not the only company doing research relevant to eScooter. What 

matters is the total amount of spillovers from all firms. So the main measure of interest for 

Bloom, Schankerman and Van Reenen is actually the sum of technology spillovers from all other 

firms. They call this variable SPILLTECH, and they compute it for every firm in every year in 

their dataset. When it’s large, that means there are a lot of firms doing a lot of R&D in fields that 

are closely related to your firm. In plain English, firms have lot of opportunity to learn from their 

rivals. 

Measuring Product Market Rivalry Spillovers 

Bloom, Schankerman and Van Reenen follow a similar approach to compute the extent of market 

rivalry spillovers. Once again they have measures of R&D by each firm but now they want to 

estimate how much of that R&D is used to improve products in different markets. To estimate 

the share of R&D that is applicable to different product markets, the authors use the share of 

sales going to 597 different industries, as defined by the four digit SIC classification system. For 

example, the majority of eScooter and BikeCo’s sales are in industry 3571 (which includes both 

bicycles and motorized scooters).  

As in the previous case, it’s possible that R&D might be important for multiple sectors. For 

example, maybe 100% of BikeCo’s patents are in class 420 (alloys or metallic compositions), but 

it applies this knowledge to its main business of bikes, but also to a side-business of 

manufacturing metal bike tools. To allow for this, they perform the same calculations as before to 

find the correlation between different industry sales. What that means is that, for example, to 

compute the correlation between SIC industry 3571 (bikes, scooters, and more) and industry 3423 

(handtools), they find every firm’s share of sales in industry 3571 and share of sales in industry 

3423 and compute the correlation between the two. When the share of sales in industry 3571 is a 

perfect predictor of the share of sales in 3423, then the two are perfectly correlated and obtain a 

correlation coefficient of 1. 



To compute the product market rivalry spillover between some firm A and firm B, the authors 

start with the first SIC four-digit industry in their sample, say industry 2013 (sausage and other 

meat products). They take the share of sales from firm A in industry 2013, the share of sales from 

firm B in 2013 and multiply them together with their estimate of firm B’s R&D (there is an 

additional step involving division by a constant that I am omitting for simplicity). This is their 

measure of how firm B’s R&D to improve their industry 2013 products impacts firm A via its 

products in industry 2013. Then they move on to the next industry in firm B, say industry 2015 

(poultry processing). They multiply the share of sales from firm A in industry 2013, the share of 

sales from firm B in industry 2015, the correlation of sales shares between 2013 and 2015, and 

firm B’s R&D. This is their measure of how firm B’s R&D in industry 2015 impacts firm A via 

its industry 2013 products. They repeat this for all 597 industries to compute the total impact of 

firm B’s R&D on firm A’s products in industry 2013. Then they do it all again for firm A’s sales 

in industry 2015, then industry 2021, and so on for all 597 industries. Adding it all together, they 

obtain a measure of R&D by firm B that impacts firm A via product market rivalry. 

However, as in the other case, firm A doesn’t just care about firm B. Instead, it’s strategy will be 

affected by the R&D of all other firms operating in markets competing with firm A. So Bloom, 

Schankerman and Van Reenen add up the product market rivalry spillover from each firm to 

construct a variable they call SPILLSIC. When a firm’s SPILLSIC is large, it means other firms 

operating in similar product markets are doing a lot of R&D; it implies rivals are stepping up 

their game. 

Empirical Results 

Now that they have a way to measure spillovers via the technology and product market channels, 

Bloom, Schankerman, and Van Reenen are in a position to test their predictions. They have a 

sample of annual observations over 1980-2001 for 715 publicly traded, patenting, US firms.  

To test prediction 1 and 2, they measure innovation in two ways. First, they use a firm’s patents 

as a proxy for innovation, weighting each patent by the number of citations it receives in the 

years after being granted. This form of weighting is a standard way to account for the vast 

differences in the importance of different patented inventions. The authors run a regression with 

SPILLTECH, SPILLSIC, and the firm’s own R&D as explanatory variables for the number of 

citation-weighted patent applications by the firm per year. As they predict, there is a positive 

correlation between the number of patents and SPILLTECH: the more R&D by rival firms in 

similar technology classes, the more patents, after holding constant a firm’s own R&D and 

SPILLSIC. There is also a positive correlation between SPILLSIC and patents, but it is so small 

that they cannot reject the hypothesis that it is equal to zero. That is, holding constant a firm’s 

R&D and spillovers from similar technology classes, there is no independent impact from R&D 

by firms operating in the same product market. 

Their second way of measuring innovation is based on the productivity of firms. For a given 

level of labor and capital (which they have annual data on), how much quality-adjusted output 

can the firm produce? To measure this, the authors need a measure of quality-adjusted output: 

they use sales divided by an industry-specific price index to control for inflation over time. They 



then include measures of capital, labor and own-firm R&D as explanatory variables. The 

intuition is that firms that make more revenues, after adjusting for inflation, with the same 

quantity of inputs must be producing better outputs or are using inputs more efficiently to 

produce more outputs. It is reasonable to believe R&D (both by the firm itself and rivals 

operating in similar technology categories) could improve product quality and production 

processes. While this is not a perfect measure, it does not have the same biases as using patents 

to measure innovation, and so provides a useful second test. Regressing this measure of sales on 

SPILLTECH, SPILLSIC, own firm R&D, labor, and capital, they obtain results as predicted. 

Firms enjoying more R&D by rivals in the same technology field (higher SPILLTECH) have 

higher output, holding constant everything else. Firms experiencing more R&D by rivals in the 

same product market (higher SPILLSIC) see no statistically significant impact, holding 

everything else constant. 

To test prediction 3 and 4, the authors need a measure of firm value. They use the market value 

of the firm, since this embodies the markets assessment of the value of all predicted future profits 

of the company. Adjusting market value by the value of non-R&D assets and adding in firm-

specific fixed effects they find value is positively correlated with SPILLTECH and negatively 

correlated with SPILLSIC, as they predict. A 10% increase in SPILLTECH is associated with a 

3.8%-10.8% increase in market value (depending on the exact model), and a 10% increase in 

SPILLSIC is associated with a 0.8%-2.4% reduction in market value (depending on the model). 

Both results are statistically distinguishable from zero. Both effects are as predicted: R&D by 

firms in technologically similar areas raises value, while R&D by firms operating in similar 

product markets lowers value. 

Additional Contributions 

The paper makes a number of additional contributions that I only briefly mention here. 

First, one concern with the above exercise may be that omitted variables are driving the result. 

The problem is that the decision about how much R&D to do responds to the outlook for R&D. 

When the outlook is good, many firms will simultaneously raise their R&D, and we might 

attribute the subsequent increase in innovation to spillovers instead of the improved R&D 

outlook. 

Ideally, Bloom, Schankerman, and Van Reenen would address this by taking the choice about 

R&D out of the hands of the firms. They would randomly assign some firms to do more R&D 

and others to do less, and then run their regressions. Naturally, such an experiment is completely 

infeasible as a practical matter. 

Instead, they exploit variation in tax incentives to obtain a similar kind of result. The “cost” of 

R&D varies across firms due to differential tax policy. For example, firms operating in different 

states face different R&D tax incentives. Since firms are rational, we assume they will do more 

R&D when taxes make it cheaper, and less when tax policy makes it more expensive. While the 

decision about where to conduct R&D is not random, the authors argue changes in tax policy are 

all but random for any specific firm. Changes in tax policy will, in turn lead to changes in R&D. 

If the tax policy changes are plausibly random, then the changes in R&D they induce can also be 



thought of as plausibly random. Some firms end up increasing their R&D because they were 

lucky enough to operate in states that decided to increase R&D tax credits, others end up 

decreasing R&D because they were unlucky and operate in states that ended R&D tax credit 

programs. The authors use an approach called instrumental variables to isolate these tax-driven 

R&D changes, which are plausibly random, and run their regressions with these changes. This 

exercise does not substantively changing their conclusions. 

Second, the paper examines the robustness of their results to a host of alternative assumptions. 

They add in a geographic dimension, so that firms can enjoy more spillovers from rivals in the 

same broadly defined region. They explore alternative ways of measuring SPILLTECH and 

SPILLSIC. They use alternative data sources. They restrict their analysis to high-tech firms only. 

Again, they generally find their conclusions stand. 

Third, the paper carefully develops a theoretical model to more fully flesh out the impact of 

spillovers than described here. In particular, the model discusses how spillovers impact the 

amount of R&D a firm should conduct, showing the results are ambiguous. The paper also 

discusses the strengths and weaknesses of different ways of measuring spillovers, arguing that 

while their preferred model has some attractive properties, there does not exist any measure 

which is obviously superior along every desirable criterion. 

Lastly, the paper uses its regression results to estimate the social and private rate of return to 

R&D. As this paper makes clear, R&D decisions by one firm impact others. If firms do not take 

into account the impact of their R&D decisions on rivals, then the amount of R&D they choose 

to do will deviate from the socially optimal level. Specifically, R&D entails benefits to rival 

firms operating in the same technology field and costs to rival firms operating in the same 

product market (via a business stealing effect). Because Bloom, Schankerman, and Van Reenen 

have estimates of how much R&D affects the output of other firms, they can use them to 

estimate the actual return on R&D. They find the average social rate of return is 55% (meaning 

society as a whole enjoys a return of $1.55 for every dollar of R&D spent), and the average 

private rate of return is 21% (meaning individual firms earn $1.21 for every dollar of R&D spent).  

Discussion 

The fact that the social return on R&D is estimated to be more than twice the return enjoyed by 

the firm doing R&D underscores just how important spillovers are. Taking the estimates at face 

value, more than half the value of R&D comes from spillovers! 

Moreover, the empirical exercise also underscores the importance of separating the technology 

spillover from the product market rivalry spillover, since the two effects operate differently and 

sometimes at cross purposes. In most cases, rival firms overlap in technology and product 

markets – think IBM and Apple – so that the total spillover is a mix of the two effects. If we 

attempted to measure the extent of spillovers with only a measure like SPILLTECH or SPILLSIC 

(but not both), our estimate would be too low. This is because the log of the two measures have a 

correlation of 0.4, and so in isolation their apparent impact on something like market value is a 

mix of the positive technology spillover and the negative product market rivalry spillover. In 



fact, when the authors run their regressions with either variable in isolation, they find smaller 

effects than when they allow them both to operate. 

Data 

The paper primarily relies on two data sources. It obtains data on firms from the U.S. Compustat 

dataset. This gives them firm-level accounting data such as R&D spending, sales (total and 

broken down by four digit industry code), market value, employment, and capital for all publicly 

traded US firms over 1980-2001. Because there is some debate about the accuracy of the 

Compustat data on sales broken down by industry, they check their results hold when they 

instead use an alternative datas source for this sales by industry, called BVD. To measure real 

output, they divide sales by industry price deflators taken from another paper (Bartelsman, 

Becker and Gray 2000) and the BEA four digit NAICS Shipment Price Deflators (only for years 

after 1996).  

As noted above in passing, the authors do not actually use annual R&D to construct their 

spillover measures, but rather a measure of R&D that gives some value to prior R&D 

expenditure. This is a common practice in the economics of innovation. The intuition is that what 

really determines a firm’s spillovers and innovative output is not so much the R&D they spend in 

any given year but the total knowledge the firm has accrued. The idea is that R&D generates 

knowledge, but then this knowledge sticks around and continues to be useful for a time in the 

future.  

Specifically, they create a variable called an R&D stock. In the first year of a firm’s existence, 

it’s R&D stock is just equal to it’s R&D in the first year. But for every year after, the R&D stock 

is equal to 85% of its level in the previous period, plus any R&D conducted in the current period. 

For example, if the R&D stock is $100 million in 2000, and a firm spends $20 million on R&D in 

2001, then in 2001 it will be equal to 0.85 x $100mn + $20mn = $105 million. The argument for 

why the R&D stock decays by 15% each period is that knowledge generated by R&D becomes 

less useful for generating new innovations over time, as the current state of the art advances. 

They complement their firm data with information on the patents held by these firms, which they 

identify using the NBER patent data project. The NBER patent data project has information on 

the primary technology class for all US patents granted from 1963 to 1999 (updated to 2006 since 

the paper was released), and the number of citations a patent receives, for patents granted in 

1975-1999. Most importantly, the dataset provides identifiers to link patents to firms in 

Compustat. 

After excluding firms with no patents or less than four observations over 1980-2001, they have a 

set of 715 firms, patenting in 426 different technology classes and active in 597 different 

industries. The typical firm has sales in 5.2 different industries and obtains 16.2 patents per year 

(mean), though with very high variability. The firms are big, employment of 3,839 people for the 

median year and firm. 

Methodology 



Construction of the main explanatory variables of interest has already been described in the 

empirical contributions section and so here we instead focus on the regressions. There are three 

regressions of interest described in this digest. 

First, their patent regression has citation-weighted patents applied for in each year by each firm 

as the dependent variable. The main explanatory variables of interest are the log of the previous 

year’s SPILLTECH and SPILLSIC. In some specifications they also include as additional 

controls the log of the previous periods R&D stock, log of the previous periods patents, and firm 

and year specific fixed effects. Because patents and the citations they receive are integers, they 

use a negative binomial regression (a functional form designed to handle integer explanatory 

variables). 

Second, for their productivity regression, their dependent variable is the log of their measure of 

quality-adjusted output (sales divided by a price index). They perform an ordinary-least squares 

regression, with the main variables of interest being the log of the previous year’s SPILLTECH 

and SPILLSIC. They also include the log of the previous period’s R&D stock, the log of their 

measure of capital, and the log of employment (their measure of labor). As additional controls, 

they include measures of industry wide output, which should help account for transitory 

industry-specific shocks. They typically include a set of firm and year fixed effects as well. 

Third, for their market value regression, the authors follow a standard procedure for estimating 

the determinants of market value. The dependent variable is the log of market value divided by 

the stock of non-R&D assets; that is, the dependent variable can be interpreted as the percent 

markup over the value of the firm’s non-R&D assets. This is also known as “Tobin’s average Q” 

in the literature. The two key explanatory variables are the log of the previous year’s 

SPILLTECH and SPILLSIC. However, following the procedure that is standard in this literature, 

an additional explanatory variable is a non-linear function of the R&D stock divided by non-

R&D assets. Lastly, as additional controls they sometimes include firm and year fixed effects, as 

well as the dependent variable lagged by one year. 

Lastly, for their regressions that leverage changes in tax policy to identify plausibly random 

variation in R&D spending, they construct firm and year specific R&D tax rates. As noted above, 

these rates will vary by firm, as well as over time as tax policy changes. They then run a 

regression with firm R&D as the dependent variable. The tax policy, plus firm and time fixed 

effects are the explanatory variables. Note that since these regressions include a firm fixed effect, 

changes in predicted R&D across firms are exclusively driven by changes in taxes. They then use 

these predicted R&D values to generate new measures of SPILLTECH and SPILLSIC, where 

changes in spillovers are plausibly determined only by changes in tax policy, not factors possibly 

correlated with the dependent variable. They use these “instruments” for SPILLTECH and 

SPILLSIC in their main regressions.  


