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Theoretical Contribution 

Jones embeds a new model of innovation into an existing model of endogenous growth. New 

productive ideas (i.e., technologies used in production) are built out of foundational knowledge, 

acquired in education. As a modeling strategy, required foundational knowledge is represented 

with the metaphor of a cylinder. All cylinders have the same circumference and arcs around the 

cylinder correspond to different forms of required knowledge. Longer arcs correspond to a wider 

“breadth” of knowledge. Figure 1 illustrates the idea. Suppose making a new airplane design 

requires knowledge of fluid mechanics, thermodynamics, and material sciences, as illustrated. 

Notice that each field of foundational knowledge “wraps” partway over the cylinder. 

Cylinders can vary in their height and technologies that require “more” foundational knowledge 

have taller cylinders. The height of a cylinder represents the “depth” of required knowledge to 

innovate. Figure 1 also illustrates this. While developing airplanes always requires knowledge of 

thermodynamics, fluid mechanics and material sciences, during the era of the Wright brothers, 

we simply didn’t know much about these fields and it was possible invent airplanes without 

much foundational knowledge (short cylinder in Figure 1: left). Since then we have learned a ton 

about each area, and new airplane designs fully build on this larger store of foundational 

knowledge. Modern airplane design requires access to much more knowledge (tall cylinder in 

Figure 1: right).  

 



Figure 1. Depth and Breadth of Knowledge 

 

The cost of acquiring knowledge relevant for innovation in technology field j (represented by Ej) 

is represented by the following function that multiplies breadth (bj) and depth (Dj(t)) and raises 

the product to a (positive) exponent ε: 

   (0.1) 

Note the depth required can vary with time t, and that the cost of education is rising in both 

breadth and depth. 

Innovators decide how much breadth of knowledge they will acquire, represented as how much 

of today’s knowledge cylinder they will wrap around. For example, in Figure 1 an innovator 

could decide to acquire knowledge wrapping 100% of the way around the cylinder, thus enabling 

them to invent new airplanes on their own. Or they could decide to obtain knowledge wrapping 

1/3 of the way around the cylinder, specializing in something like “Fluid Mechanics.” In the latter 

case, they will need to team up with other innovators whose knowledge complements their own, 

so that collectively their knowledge spans the required breadth, if they want to invent new 

airplanes. 

Once an individual or team has enough foundational knowledge to innovate, the model describes 

how they may invent and patent new technologies. New technologies are licensed to producers, 

and innovators are compensated with licensing fees. Both the size of the economy and the depth 

of knowledge are increasing in the number of technologies available. The model is completed 

with a description of how each worker decides (1) whether to be a production worker or 

innovator and (2) if an innovator, what field to specialize in and what breadth of knowledge to 

obtain (they always go as deep as necessary to invent new things).  

Along a balanced growth path, a series of equalities lead to the paper’s main results. Under 

balanced growth, the share of the population engaged in innovation is neither growing nor 

shrinking. This means the expected value of being a worker must equal the expected value of 

being an innovator in any field j; otherwise, people would switch from one occupation to the 

other. Let V represent the lifetime value of a profession: 

    (0.2) 

The same principle implies the value of being an innovator is the same in every field. The 

expected value of being an innovator is the net value of expected innovation licensing fees less 

the cost of education. Crucially, Jones assumes that innovation is isoelastic in breadth of 

knowledge, meaning a 1% increase in breadth leads to a fixed percentage increase in new ideas 

(whether your breadth stretches ¼, ½, or whatever around the cylinder). He shows that when this 

assumption is true, the cost of education will always be equal to a constant proportion of lifetime 

value. Since every field has the same expected value, this implies workers spend the same 

amount on education for every field. Let s be the share of lifetime income spent on education. 

Then: 



     (0.3) 

But different fields may have different knowledge depths. Some fields may be represented by 

short cylinders, like in Figure 1: left, and others by tall cylinders, like in Figure 1: right. If 

everyone spends the same amount on education though, inventors in fields with very deep 

knowledge requirements must have very narrow expertise, and inventors in fields with very 

shallow knowledge requirements must have very broad expertise. This can be seen if we 

rearranging equation (0.1) and observe that Ej = E for any field j: 

   (0.4) 

We can summarize the main theoretical results as follows. 

1. At any point in time, innovators all spend the same amount on education, as indicated 

by equation (0.3). 

2. At any point in time, innovators in fields with deeper knowledge requirements obtain 

narrower breadth of their knowledge (they specialize more), as indicated by equation 

(0.4). 

3. Because workers in fields with deeper knowledge requirements are more specialized 

(have less breadth), bigger teams are required to innovate in these fields. 

4. Because workers spend a constant share of their lifetime income on education, as the 

economy grows in per-capita terms, the costs of education rise. 

5. If the depth of knowledge grows faster than the economy, workers specialize more and 

more over time. 

6. Because workers specialize more and more over time, the size of teams grows over 

time. 

Jones concludes with an explicit derivation of the economy’s growth rate. This is proportional to 

the growth of the labor supply. Growth is faster the more the productivity of research improves 

in response to new knowledge. Growth is slower the faster the depth of knowledge required for 

innovation grows.  

Empirical Findings 

Jones uses data on US patents granted between 1975 and 2001 to complement his theoretical 

contributions. He develops several proxies for team size, cost of education, specialization, and 

knowledge depth.  

The simplest proxy is team size, for which Jones simply uses the number of inventors listed on 

each patent. He shows the average number of inventors per patent has risen from 1.7 to 2.3 

between 1975 and 1999, consistent with theoretical result #6 above. 



 

Figure 2. Inventors per patent on the rise 

The next simplest proxy is for the cost of education. Because education and training takes time, 

Jones uses the age of first patent for the cost of education. As it becomes necessary to go to 

college, and then to obtain a masters, and then a PhD before one knows enough to invent, the age 

of first invention should rise. Jones documents the age of first invention has risen from about 

30.5 to 31.5 between 1985 and 1998, consistent with theoretical result #4 above. 

 

Figure 3. Age at First Invention Rising 

Jones’ proxy for specialization relies on the US Patent and Trademark Office’s patent 

classification scheme. Patents are assigned to one of 414 major technological categories, and 



Jones reasons that it is harder for very specialized workers to work in different categories. The 

probability of patenting in differing technology categories between subsequent inventions is his 

measure of specialization. Jones shows the probability of switching technology categories 

between consecutive patents (granted within 3 years of each other) has declined from 0.57 to 0.51 

over 1975 to 1993, consistent with theoretical result #5 above. 

 

Figure 4. Probability of Switching Fields Falling 

Finally, Jones’ construction of a measure of “knowledge depth” is considerably more 

complicated than the others and I reserve a full discussion of it to the methodology section. But 

in brief, patents make citations to other patents. If these citations are interpreted as a signal that a 

patent is using ideas from the cited patent, then the more citations a patent makes (and the more 

citations the cited patents make), then plausibly the more knowledge went into the technology.  

Jones runs a number of regressions linking knowledge depth to his other variables of interest. 

Knowledge depth is positively correlated with the number of inventors on a patent, consistent 

with theoretical result #3 above. Knowledge depth is negatively correlated with the probability of 

switching technology categories, consistent with theoretical result #2 above. And knowledge 

depth is uncorrelated with the age of first invention, consistent with theoretical result #1 above. 

Last, as a further check, Jones compares the number of inventors per patent and age at first 

invention across different technology fields. As he predicts, there is little variation in the age of 

first invention (consistent with theoretical result #1 above), but there is significant variation in the 

number of inventors per patent (consistent with theoretical result #3 above). 

Discussion 

The presentation of this digest is a bit misleading. In the paper, Jones begins with his empirical 

findings and then develops a theory that ties them together. His develops a model where the 

“burden” of knowledge necessary to innovate continually grows over time. Consistent with his 



patent data, inventors respond by specializing more, relying on teams more, and spending more 

time receiving an education. Thus there is a growing “burden of knowledge” and the decline and 

death of “renaissance men” who are capable of making significant contributions in many 

different fields. 

Data 

Jones’ empirical data is drawn from the NBER patent data project 

(https://www.nber.org/patents/), from Jaffe, Hall, and Trajtenberg. This includes data on all 

2.9mn US patents granted between 1963 and 2001, with more detailed data on the 2.1mn patents 

granted since 1975.  

He supplements this data with data on birthdays from the website www.AnyBirthday.com. At the 

time of writing, the website had data on 135 million Americans’ birthdays, gleaned through public 

records. Jones uses names and zip codes to match inventors on patents to individuals on the 

website and obtains 56,281 unique matches (one inventor linked to a single name). Notably, the 

sample of inventors whose birthdays are matched is not a random sample of the population of 

inventors, but is skewed towards inventors who did not assign their patent to another 

organization (or individual) at the time of grant. This is because inventors who assign their 

patents to an organization (generally their employer) do not provide their zip codes as often as 

“independent” inventors. Nonetheless, restricting attention to the patents of inventors whose 

birthdays Jones observes reveals broadly similar trends. 

Methodology 

There are a few subtleties in the construction of Jones’ proxies. When constructing age at first 

invention, Jones cannot observe patents granted before 1975, which calls into question whether 

observed patents are really the first invention of the listed inventor. To address this, he restricts 

his analysis to inventors between the ages of 25 and 35 whose first observed patent comes after 

1985. 

Second, when constructing his measure of specialization, Jones looks for field switches that 

occur between consecutive patents applied for within 3 years of each other. However, we only 

observe applications that were granted before the dataset ends in 1999, and there can be 

considerable variation in the time required to move a patent from application to grant (usually 2 

years, but possible much longer). Jones therefore limits his observations to applications that were 

granted in 3 years or less. 

Third, to construct a proxy for knowledge depth, Jones relies on patent citations. Interpreting 

these citations as signals of knowledge flows (for example, Patent X might cite patent Y if it uses 

some of the ideas associated with patent Y), Jones uses the size of the “citation tree” as a proxy 

for knowledge depth. The citation tree is the total number of citations a patent makes, plus the 

citations made by the patents it cites, plus the citations made by those patents, as far back as 

observations permit. Patents with a large citation tree tend to cite lots of patents that, in turn, cite 

lots of patents.  

http://www.anybirthday.com/


There are two challenges with the raw citation tree. First, the trees vary tremendously in size. To 

avoid letting results be dominated by a small number of very large citation trees, Jones uses the 

log of tree size. Second, tree size grows over time as more data becomes available and this does 

not necessarily represent greater knowledge depth. To adjust for this, Jones computes the mean 

value of the tree size for each year, and he measures relative knowledge depth as the difference 

from this mean value, measured in standard deviations for that year. For example, suppose a 

patent granted in 1995 has a citation tree with 2,981 citations. The natural log of this is 8. Suppose 

in 1995 the mean log citation tree is 4 with a standard deviation of 2. This means our patent with 

a citation tree of 2,981 citations is 2 standard deviations above the mean for 1995. Jones would 

use “2” as his proxy for knowledge depth in this field in this year. 

Jones uses his constructed data to document trends over time and in cross-section. For trends 

over time, Jones supplements the above figures with OLS regressions (in the case of team size 

and age at first invention) or probit regressions (in the case of probability of switching fields). 

These allow him to adjust for possibly confounding changes in technology field and the rise of 

foreign patenting. In all cases, the trends documented in his diagrams remain robust. He also uses 

OLS and probit regressions to investigate the correlation between knowledge depth and his other 

proxies as described in the empirical findings section. He demonstrates his results are robust to 

additional control variables such as inclusion of the squared knowledge depth measure, and the 

number of direct citations make. 

 


