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Findings 

The average age at which 544 Nobel prize winners in Physics, Chemistry, Medicine, and 

Economics do their prize-winning work increased by 7.8 years over the course of the 20th 

century, when adjusting for field and country of birth.1 The average age at which 286 great 

inventors made their big breakthroughs rose by 8.2 years over the 20th century, again adjusting 

for field and country of birth.2  

Part of this increase appears to be due to the general aging of the population. But it’s not the 

most important driver. Jones develops a model of research/inventive productivity over a lifetime 

(e.g., how likely are you to develop a good idea at age 25, 30, 35, etc.), which he calibrates using 

data on the age at great invention and the age distribution of the population. This model lets him 

separate out how much of the change is driven by delays to getting started at research, how much 

is driven by higher research productivity late in life, and how much is due simply to the greater 

share of older workers in the population as time goes on. Greater research productivity late in life 

doesn’t seem to explain any of the above increase. The greater share of older workers in the 

population accounts for about 3 of the 8 year increase. Delays in the onset of research account for 

about 5 of the 8 years. 

Figure 4 clearly illustrates this. The figure uses Jones’ calibrated model to illustrate the 

probability of a great invention being discovered by someone at each age, given the population 

profile of scientists/inventors in 1900 and 2000. This diagram indicates the increase in age is 

driven by a massive decline in the probability of great invention for those aged 30 or below, with 

little to no change for the probability of coming up with a great innovation after age 30. For some 

reason, inventors have stopped inventing things while they are young, even though this used to 

be one of their most fruitful periods of discovery. 
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Jones next shows that the age at which scientists have finished their highest degree has increased 

by about 4 years in a century. In other words, the increase in time spent on education and training 

is quite close to the 5-year increase not attributable to an aging workforce. Moreover, as 

indicated in Figure 5, looking field by field it is clear that the age of terminal degree follows a 

similar trend as the age of Nobel prize winning work, including a notable dip for physics around 

the time of the quantum mechanics revolution. 



 

Dark lines, left axis – age of Nobel prize winning work. Light line, right axis – age of final 

degree. 

Lastly, Jones considers a natural experiment that interrupted the training of some researchers 

during the 20th century: World War I and World War II. Researchers still in school when these 

wars broke out had an unusually sharp and discrete interruption to their studies. On average, it 

took an extra 2.8 years for scientists to complete their degrees,3 if they had their studies 

interrupted by the wars. The average increase in their age of great achievement also increased by 

2.8 years.4 

Discussion 

One way to interpret Jones’ data is that a certain amount of knowledge and training is a necessary 

prerequisite before you can make new discoveries, and that the time required to obtain this 

training has risen by 4-5 years (over a century). This may be because the quantity of knowledge 

that is a prerequisite to making new discoveries has grown. This pushes back the age at which 

great inventions are made. Furthermore, Jones’ calibrated model suggests the impact of longer 

training is not simply to push all research activity by 5 years, but rather to truncate the life of 
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invention. It’s more like scientists simply have 5 fewer years in which to do research, and the 

years lost tended to be particularly active ones in the past. 

Data 

Jones uses biographies of Nobel prize winners published on the official web site of the Nobel 

Foundation (nobelprize.org) for data on 547 winners in Chemistry, Physics, Medicine, and 

Economics over 1901 to 2003. He is able to determine dates of birth, country of birth, and dates of 

the winning contribution for 544 of these winners. In 75% of cases, the official Nobel biography 

gives a single year in which the winning contribution occurred. In the rest of cases, the Nobel 

citation encompasses a body of work that spans multiple years and Jones uses the midpoint 

between the first and last year of contribution. Jones notes this assumption is not crucial to his 

findings. In a few cases, additional sources were consulted to pin down the year of contribution. 

Jones uses two technological almanacs to derive the birth date, country of birth, and date of great 

invention for 286 twentieth century inventors. These technological almanacs compile major 

technological advances across many categories: electronics, energy, food, agriculture, materials, 

tools, and devices. Example inventions include various forms of jet engine, the personal 

computer, radio, and plastic materials. 

To estimate his calibrated model of productivity, Jones uses data on the distribution of ages in the 

US census. He variously uses the entire US population, the population of those active in the labor 

force, and the population of professional scientists and engineers. Because the sample is so small 

for the last category (especially in early years), Jones applies some statistical smoothing 

techniques. 

Methodology 

Jones uses ordinary least squares estimation to find (1) the change in age of great invention, (2) 

the change in age of final degree, and (3) the impact of the World Wars on age of final degree and 

age at great invention. His regressions have the general form: 

         (1.1) 

where ai is the age of individual i when they made their great invention or finished their terminal 

degree, and ti is the calendar year in which individual i made their great invention or finished 

their terminal degree. The term Xi includes controls such the country of birth, the field of the 

work, and in some specifications the presence or absence of a World War during an individual’s 

educational years. Separate regressions are run on the population of Nobel prize winners and 

great inventors. All results reported in the findings reject the null hypothesis that the actual 

variable of interest is zero with at least 95% confidence. 

To estimate his calibrated model of the productive lifecycle, Jones specifies a model combining 

real data on the population of the workforce with various unknown parameters. This model, once 

parameters are fed into it, makes predictions about the probability a given great discovery is 

made by an individual of age a in year t. He then uses maximum likelihood estimation to choose 

the value of unknown model parameters which best fit the actual data on age at great invention 



across the 20th century. Once he has chosen parameters for his model, he can use it to generate 

the probability a great discovery is made at every age, for any year in his data set. 

The basics of his model have this form: 

Pr(discovery made in year t by age a inventor) =  

(share inv. pop. with age a in t) x Pr(in year t, age a inv. makes a discovery) 

The left-hand-side variable is empirically given by the data, since we know the age at invention 

for every discovery in each year. The first right-hand-side variable is also given by data on the 

share of the US population at age a in every year. The second right-hand-side variable is 

estimated though. 

         
                    

 (1.2) 

where exp(.) is the exponential function. This equation has a number of unknown parameters (all 

the greek letters), which are chosen by maximum likelihood algorithm to best fit the data. To 

interpret this function, the most important terms are buried in the exponential functions.  

Inside the first set of braces we see: 

     (1.3) 

When the age a rises relative to   then if you carefully follow the chain of effects, it has 

the impact of raising Pr(in year t, age a inv. makes a discovery). The term    can be 

thought of as a measure of how old a scientist must be before he has a high probability of making 

a great discovery. Since    includes t, we can have this effect rise over time. It turns out 

the values of μ0 and μ1 that best fit the data imply this age has risen by about 5 years over the 20th 

century. 

Inside the second set of braces we see:  

     (1.4) 

When the age a rises relative to    then if you carefully follow the chain of effects, it has 

the impact of lowering Pr(in year t, age a inv. makes a discovery). The term    can be 

thought of as measure of how old a scientist can get before their probability of making a great 

discovery falls sharply. Since    includes t, this lets Jones see if scientists have longer 

working lives over time. In this case, no, it turns out the values of θ0 and θ1 that best fit the data 

do not imply the age at which great invention “stops” has risen over the 20th century. 


