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Abstract: In combinatorial models of innovations, new technologies are built from combinations 

of pre-existing technological components. Researchers learn which components work well 

together by observing previously successful combinations and the pool of ideas can be “fished 

out”, i.e., exhausted, if it is not “restocked” by the discovery of novel connections. We first show 

US patents have made increasingly less novel connections among technological constituents 

since the 1950s, and that the number of technological fields to which these connections are 

applicable has stopped growing since the 1980s. We then estimate the parameters of an ideas 

production function, and find parameter estimates consistent with technology fields being fished 

out if not continually restocked by the discovery of novel connections between technological 

components. We use the ideas production function to estimate the number of new patent 

applications induced by each patent granted between 1926 and 2001, and show this number has 

trended downward since the 1940s.  
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The rate of innovation is pulled in opposite directions by two opposing forces. As has 

been long observed, knowledge is cumulative: the more we know, the more areas of research are 

opened for exploration. On the other hand, the number of ideas may be finite and exhaustible. In 

this article, WE refer to the first effect as the restocking effect and the second as the fishing out 

effect. When the pool of ideas is restocked faster than it is fished out, the set of new ideas 

expands and finding ideas expected to be worth their R&D cost is easier. When the fishing out 

effect outpaces the restocking effect, the set of new ideas contracts and it becomes harder to find 

ideas worth pursuing. This paper uses a combinatorial framework to highlight stylized facts 

about innovation, as revealed by US patent data, and to assess which of these opposing effects 

has dominated over 1926-2009. 

Combinatorial models of discovery start with the observation that all ideas and 

technologies can be broken down into constituent elements. Take the internal combustion engine 

as a representative example. While it is a single idea, it can also be viewed as a combination of 

pistons, crankshafts, flywheels, and so on. Each of these elements existed prior to the engine, and 

its discovery was about assembling pre-existing constituent elements into a combination not 

previously known. This perspective on the innovation process has a long history. Abbott Payson 

Usher’s A History of Mechanical Inventions (1929) notes “Invention finds its distinctive feature 

in the constructive assimilation of preexisting elements into new syntheses, new patterns, or new 

configurations of behavior” (Usher, 1929, pg. 11). More recently, this perspective has been 

articulated in economics by Weitzman (1998), Olsson and Frey (2002), Olsson (2005), Arthur 

(2009), Feinstein (2011), Ghiglino (2012), and Akcigit, Kerr and Nicholas (2013). 

A straightforward interpretation of “fishing out” follows from combinatorial models of 

innovation. If innovations are combinations drawn from a fixed set of elements, then the number 
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of such combinations is finite and each idea draws down the stock of potential future innovations 

(i.e., there are only so many ways to combine pistons, crankshafts, flywheels, and so on to obtain 

an engine). Weitzman (1998) and Akcigit, Kerr, and Nicholas (2013) both incorporate versions 

of fishing out. Combinatorial models can also model the cumulative nature of knowledge in 

various ways.1 Most relevant for this paper is Arthur (2009)’s concept of ‘clumps,’ in which 

some components (such as pistons and crankshafts) are understood to go together naturally 

because they “repeatedly form subparts of useful combinations” (Arthur 2009, pg. 70).  

We take the set of technologies available for recombination as exogenously given at any 

time, and direct our attention to how these components are recycled and recombined. In 

particular, our interpretation is that researchers learn how any two pre-existing technologies can 

be fruitfully combined from the example of previously successful combinations. For example, 

inventors of the internal combustion engine knew how crankshafts and pistons interact from their 

previous use together (even in otherwise unrelated inventions, such as a waterwheel).   

This framework for thinking about discovery can be mapped to patents by using the US 

Patent and Trademark office’s (USPTO) US Patent Classification System (USPCS). The USPCS 

was developed to organize patent and other technical documents by common subject matter. 

Subject matter can be divided into a major component, called a class, and a minor component, 

called a subclass. Whereas “a class generally delineates one technology from another,” 

subclasses “delineate processes, structural features, and functional features of the subject matter 

                                                            
1 E.g., as arising from the discovery of new components (Weitzman 1998, Akcigit Kerr and Nicholas), or 

the discovery of new combinations that can be repeated to diminishing effect (Akcigit, Kerr and Nicholas 

2013), or the discovery of ideas that bridge distant technological spaces (Olsson 2005 and Feinstein 2011) 

and reveal the quality of “nearby” ideas (Jovanovic and Robb 1990, Kauffman, Lobo and Macready 2000, 

Auerswald et al. 2000). Of course, it is also possible to model the cumulative nature of innovation other 

ways (Scotchmer 2004 provides an entry-level survey). See Galasso and Schankerman (2015) for a recent 

example. 
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encompassed within the scope of a class” (USPTO 2012). Subclasses are a natural candidate for 

the building blocks of combination, out of which researchers build new ideas, and classes are a 

natural candidate for distinct technological fields. We use the patent classification system to 

proxy for the technological elements being recycled and recombined across different fields, and 

to assess whether the restocking or fishing out effect dominates.  

The paper proceeds in five steps. Each section builds on the proceeding to introduce a 

new stylized fact about innovation in the US over the 20th century. Section 1 introduces our 

patent data and our measure of patent novelty. In this section we document the decline of novel 

connections between technological components since the 1950s. Section 2 introduces our 

measure of technological fields and documents that the number of technological fields for which 

a patent’s connections are relevant has plateaued since the 1980s. Sections 3 uses these metrics 

to estimate field-specific knowledge production functions. We find parameter estimates 

consistent with technology fields being fished out if not continually restocked by novel 

connections. In Section 4, we use this model to estimate the number of new patent applications 

induced by each patent granted between 1926 and 2001, and show this number has trended 

downward since the 1940s. Section 5 examines these patent impacts by field. The remainder of 

the paper performs robustness checks for the model estimated in section 3, discusses the paper’s 

limitations, and relates the findings to other literature on science and technology in the 20th 

century. 

The picture that will emerge is of a weakening base for future innovation, albeit with 

important caveats discussed in the conclusion. Consistent with prior work in this vein (see 

Clancy 2017), we find support for the general framework that innovation slows if it is not 

periodically replenished with novel connections. The extent to which the US private sector is 



5 
 

generating novel connections with wide applicability across many fields, however, has been 

declining for a decades now. Indeed, in some of our model estimates, we find evidence that each 

patent now fishes out more ideas than it restocks. That said, this paper merely documents these 

trends, and does not attempt to determine whether current R&D strategies are socially 

suboptimal. 

This work is most closely connected with other empirical papers that study combinatorial 

features of innovation. Akcigit, Kerr, and Nicholas (2013) and Clancy (2017) use the same 

dataset to explore combinatorial features of innovation. There is also a large literature that relies 

on the citations made by patents and academic papers to study combinatorial innovation2 and 

spillovers.3 This paper differs from the preceding in two ways. First, it focuses on the 

productivity of entire technological fields, and attempts to quantify whether the fishing out or 

restocking effect has been dominate in the aggregate. Second, it documents long-term changes in 

the conduct of R&D that are only visible from a combinatorial perspective, but which 

complement alternative perspectives (discussed in the conclusion). 

1. Patent Data and Novelty 

My data draws on the full set of US utility patents granted between 1836 and 2009 (7.6 

million patents), but we focus on 1926-2009, the period for which patent application dates are 

available (figures going back to 1836 for data that does not depend on application dates are 

available in the supplemental materials). There are more than 450 classes and more than 150,000 

                                                            
2 Fleming (2001), Keijl et. al (2016), Nemet (2012), Nemet and Johnson (2012), Schilling 

(2011), and Shoenmakers (2010) explore how combinatorial features impact citations to patents 

and academic journal articles. 
3 See Feldman and Kogler (2010) for a survey, and Acemoglu, Akcigit, and Kerr (2016) and 

Agrawal, Galasso and Oettl (2017) for more recent examples. 
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subclasses in the USPCS. To take two examples, class 014 corresponds to “bridges,” and class 

706 corresponds to “data processing (artificial intelligence).” The subclasses are nested within 

each class and correspond to more fine-grained technological characteristics. The uppermost 

subclass is called a mainline subclass, hereafter “mainline.” For example, the subclasses 014/3 

(bridge; truss) and 706/15 (data processing (artificial intelligence); neural network) are both 

mainlines. The subclass nested one level down is said to be “one indent” in from the mainline. 

Within these one-indent subclasses may be still further subclasses, called two indent subclasses, 

and so on, each delineating a more specific technological component.  

Both Fleming (2001) and Akcigit, Kerr, and Nicholas (2013) use the raw subclasses 

assigned to patents as proxies for the technological elements combined in a patent. However, one 

drawback to this approach is that subclasses correspond to different levels of specificity. For 

example, subclass 706/29 is indented in from subclass 706/15, and both relate to neural networks 

(but at different levels of specificity). In contrast, neither subclass is indented in from 706/45, 

which is not associated with neural networks at all. Without looking at the USPC index, it is 

impossible to know there is a relationship between some of the subclasses, but not others. To 

obtain a consistent, exhaustive, non-overlapping set of technological components, we use 

technology mainlines as our primary elements of combination as in Aharonson and Schiling 

(2016) and Clancy (2017). This identifies a set comprising 13,517 technological elements that 

are recycled and combined in patents.  

 We observe the subclasses assigned to every patent and collapse each technology 

subclass down to the mainline to which it belongs. Not all patents have multiple mainlines 
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assigned to them, but most do.4 Over our sample of 1926-2009, 68% of patents were assigned 

more than one mainline, with a mean of 2.5 mainlines per patent. Out of 91.3 million possible 

pairs of mainlines, 1.75 million pairs are actually assigned to at least one patent over the period 

1926-2009. Viewed through a combinatorial innovation lens, of the 91.3 million possible pairs of 

technological components, researchers have discovered how to usefully combine only 2%. Over 

the same period, the mean number of patents each pair belongs to over the entire period is 10.1, 

but the distribution is highly skewed: 51.2% of observed pairs are only ever assigned to one 

patent, but 46.1% of all pair assignments belong to 1% of pairs.  

Two dates are relevant for each patent. The application date marks when the patent 

application was filed, and the patent grant date marks when the USPTO granted the patent. 

Patents are sequentially numbered as they are granted, so that the year any patent is granted can 

be inferred from the patent number (USPTO 2014a). However, only the application years for US 

patent granted between 1926-2009 are available (Kogan et al. 2017). Moreover, the number of 

patents for which application years are available begins to rapidly decline after 2001 due to a 

truncation effect (we only observe patent applications if they are granted by 2010). Thus, 

although we use patent data from 1836 to construct measures of researcher knowledge, we only 

examine patenting behavior for the period 1926-2001. There were 4.75 million patents granted 

during this period. 

In this paper, learning underpins the restocking effect. This paper introduces an 

empirically tractable measure of what researchers learn from other inventions derived from the 

                                                            
4 Because mainlines were not designed to track the underlying elements of technological 

combination, there is no guarantee that every patent will be assigned multiple mainlines. I 

discuss this limitation in section 7.1.  
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extent to which a particular pair of elements has successfully been combined in the past. To 

measure researcher knowledge about how to combine different mainlines, define the affinity of a 

pair of mainlines, where a pair has high affinity if researchers generally know how to integrate 

the two mainlines to do something useful. Every time a patent successfully combines two 

mainlines, researchers’ assessment of the pair’s affinity is increased. To compute a proxy for 

affinity, let njt  be the number of patents granted in year t or earlier that are assigned both 

mainlines in the pair indexed by j. The affinity of pair j at time t is defined to be: 
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jt

jt

n
a

n



  (1) 

The functional form of our measure of affinity is derived from a logit regression of the 

form ujt = logit(θ + βlog njt), where ujt  is a dummy variable equal to 1 if the pair j is assigned to 

any patent application in year t. Using the definition of the logit function, this can be rewritten 

as: 
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To select θ  we run a logit regression on a sample of 10,000 randomly selected mainline-pairs 

used at least once over 1926-2009. For each pair, we compute njt for each year where njt > 0. 

Estimating equation (2) we obtain e-θ = 50.01 and β = 0.96, which we approximate with equation 

(1). Consistent with related work (Clancy 2017), equation (1) embeds the assumption that each 

successful instance of pair j being used in a patent is less informative than the previous one. For 

large njt, additional instances of the elements being integrated successfully tell researchers 

nothing new, because they are already certain this can be done.  
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I use affinity to measure of the extent of novel connections between mainlines made by a 

patent. For reasons that will become clear in section 3, define the metric of patent novelty as: 

 
1

( )
50 50 1

jt jt

it

j p jt jt

n n
AFF p

n n

  
   

    
   (3) 

Where j  p indicates that pair j connects two mainlines assigned to patent p and the subscript i 

indicates the field to which patent p belongs (discussed in the next section). 

This measure is largest when njt is small (i.e., the patent makes novel connections) and 

when a patent combines more mainlines. Note ΔAFFit(p) = 0 if a patent is assigned less than two 

mainlines. Figure 1 illustrates the average value of ΔAFFit(p) for patents granted in year t, as 

well as the average number of mainlines assigned to patents granted in the same year. 

The average ΔAFFit(p) of a patent grant rises from under 0.02 in 1926 to a peak of 0.033 

in 1947, an increase partially attributable to a shift towards more complex patents over this 

period (from 1.85 to 2.43 mainlines per patent). But thereafter the number of mainlines per 

patent increases from 2.43 to a peak of 2.65 between 1947 and 1988, while the average 

ΔAFFit(p) falls from 0.033 to 0.026. The number of mainlines per patent decreased from 2.65 to 

2.24 by 2009, i.e., to levels seen in 1936, while the average ΔAFFit(p) accelerated its declines, 

reaching nearly 0.01, well below its 1936 level. When we restrict the sample to patents with the 

same number of mainlines, there is a steady downward trend from the start, implying researchers 

have been shifting away from more novel combinations of technologies throughout the period. 
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Figure 1. Average Novelty per Patent and Mainlines per Patent (1926-2009) 

 

2. Patent Fields and Spillovers 

For each patent, one and only one of the assigned subclasses is denoted the primary 

classification, which is based on the main inventive concept. We use primary classifications to 

group patents together into technological fields. This results in 428 technology fields after we 

exclude classes with no patents assigned to them. 

Researchers in other fields also benefit from learning that technological components can 

be fruitfully combined. Note that ajt is a function of the total number of patents combining the 

components of pair j, not merely the number of such patents in the same technological field. All 

else equal, learning a pair of mainlines can be combined has a bigger impact if the mainline-pair 
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is used by many different technological fields. We define a spillover from patent p to be a 

technology field other than patent p’s primary classification that contains patents using at least 

one mainline-pair assigned to patent p. For example, if patent p is granted in 1990, belongs to 

field 014 and uses mainlines 014/3 and 706/15, then it has a spillover to any other field that also 

contains patents (granted prior to or in 1990) using 014/3 and 706/15. 

The average number of spillovers per patent, as well as the number of mainlines per 

patent, is presented in Figure 2. 

 

Figure 2. Spillover Fields per Patent and Mainlines per Patent (1926-2009) 

 

The number of spillover fields steadily increases at a rate of 0.35 per year through 1986, 
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plateaus, oscillating between 24 and 29 from 1984 to 2009. This may be connected to the slight 

decrease in the number of mainlines per patent that we observe after 1987. 

3. Estimating Field Specific Knowledge Functions 

To quantify the impact of the trends highlighted in Figures 1 and 2, we estimate an ideas 

production function. These functions links metrics of field-specific researcher “knowledge 

stocks” to the production of new ideas (Porter and Stern 2000, Popp 2002, Zucker et al. 2007, 

Madsen 2008). In this paper, we use the following functional form:  

    it it it ity A AFF PAT
 

   (4) 

where yit signifies patent applications in field i in year t, Ait is a field/year specific scalar and 

AFFit and PATit signify field-specific knowledge stocks. 

3.1 Constructing Knowledge Stocks 

 Let PATit signify the patent stock, a count of all patents with field i as their primary 

classification and granted up through year t. AFFit signifies the affinity stock, given as the sum of 

the affinities of all pairs belonging to patents assigned to a field: 

 
( )

it jt

j i t

AFF a


    (5) 

where i(t) indicates the set of pairs used by patents belonging to field i granted in or prior to year 

t. We can now also observe that the measure of novelty developed in section 1, ΔAFFit(p), is 

equivalent to the increase in a field’s affinity stock that can be attributed to a single patent. 

Constructing AFFit  requires determining which mainline-pairs form the knowledge base to 

which researchers in the field have access. Clearly any mainline-pair j that is assigned to a patent 

in field i belongs to field i itself. Moreover, it is not important to assign never-used mainline 
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pairs to any field because they have ajt  = 0 and so their inclusion or exclusion has no impact on 

AFFit.  

However, suppose there is a mainline-pair j’ that has a history of use in several fields, so that 

aj’t > 0. In period t a patent in field i’ is assigned j’, but no other patent in i’ has ever been 

assigned j’. Was j’ always part of field i’ knowledge, latent and waiting to be used? If so, AFFi’t 

should include aj’t in periods prior to t. Alternatively, it may be that prior to period t, no 

researchers recognized the relevance of pair j’ for field i’ applications. If this is the case, then 

AFFi’t should not include aj’t in periods prior to t. 

For estimation reasons, it is not a good idea to assume aj’t was always part of field i’ 

knowledge. Simply including all pairs that are ever used by a field will introduce bias into our 

estimates, because fields that are more productive in the future will tend to accumulate more 

mainline-pairs. Including these pairs in the calculation of AFFit for early periods will skew AFFit 

upwards for fields that will be more productive later on, introducing a misleading correlation 

between AFFit and future patent applications. Instead, we base our definition of AFFit on 

information available only in period t. 

To begin, we assume any mainline-pairs assigned to patents with a primary classification in 

field i and granted through period t form the set of mainline-pairs necessary to construct AFFit. 

Thus, AFFit will grow to include more pairs over time as patents using new mainline-pairs are 

granted. However, in our estimation strategy, we use the first difference of each observation. 

This allows me to hold constant the set of mainline-pairs used in a given field for a field. That is, 

we can use as an observation: 

  , , 1
( )

it j t j t
j i t

AFF a a 


     (6) 
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Note that in equation (6) the set of pairs are those used through period t and we measure only the 

changes in their affinity (in the robustness checks, we show that we obtain qualitatively similar 

results if we use the set of pairs used through period t – 1). This measure corresponds to the 

interpretation that the first time a mainline-pair is used by a field, others in the field were also 

aware of its potential utility for applications in the field. Note that in all cases, we define the set 

of pairs available in period t by the set of patents granted through period t, rather than the set of 

patent applications through period t. Using patent applications to define the set of mainline-pairs 

in use would introduce a simultaneity problem wherein AFFit would tend to jump in any year 

with many patent applications using novel mainline-pairs. 

 Histograms for all major variables are available in the supplemental materials. 

3.2 Estimation Methodology 

To estimate equation (4), we begin by taking logs: 

 log log log logit it it ity A AFF PAT        (7) 

Where logAit is represented by a set of field and year fixed effects, and an idiosyncratic error 

term. Each observation is a technology field-year and we only include years that a field is 

‘active’ (that is, every year after the first patent in it is granted). This gives me an unbalanced 

panel over 428 fields. 

Estimating equation (4) in this way requires that the count nature of patent applications can 

be suitably approximated as continuous. This is true for the vast majority of observations (86.4% 

of observations are greater than 10). The advantage of a log-transformation over an alternative 

model specifically tuned to count data (such as a poisson or negative binomial model) is that we 

can better control for serial correlation and omitted variable bias. The dependent variable in 
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equation (7) is trending over time, and we use a panel augmented Dickey-Fuller test, correcting 

for cross correlation among panels (Constantini and Lupi 2012) to test for unit roots. As 

indicated in Table 1, we fail to reject the null hypothesis of a unit root in levels and first-

differenced data when we use the entire sample (1926-2009).  

However, when we repeat the tests for 1926-2001, we reject the null hypothesis for the first 

difference. Data from 2002-2009 is severely impacted by truncation bias; the annual number of 

patent applications plummets from over 200,000 per year to nearly zero by 2009. This drop in 

patenting is illusory, and reflects the increasingly scarce number of patents applications that are 

granted by 2010, the year our patent application data was collected. We drop these observations, 

and so our estimates are based on first-differenced logged observations from 1926-2001 (in our 

robustness checks, we include estimates based on 1926-2009). When differencing AFFit we use 

the set of mainline-pairs assigned to patents granted up through year t, so that the change in 

AFFit is entirely due to changes in ajt, not changes in which mainline-pairs belong to a field.  

A potential problem in our dataset stems from survivorship bias. Each panel corresponds to a 

technological field, but these fields are labels invented by the USPTO to help organize their 

search for relevant technology. The USPTO is unlikely to invent a new label for a field to which 

only a very small number of patents are ever attributed – these patents are likely to be assigned 

instead to the closest existing technology field. For this reason, very young technology fields are 

likely to exhibit sustained growth, relative to the explanatory variables, because if they did not 

they would not have been broken out as new fields by the USPTO. To account for this 

possibility, we include a dummy and interaction term for “young fields.” To define a young field, 

we note the smallest value of PATit for the year 2009 (when each field’s patent stock is at its 

maximum) is 5, but this field is a significant outlier, and the next smallest field has PATit = 179. 
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We define a young field to have a patent stock of half this value (89.5). By this definition, 1,440 

observations (4.1%) are classified as belonging to young fields. While the inclusion or exclusion 

of a young-field interaction term is important for our results (see the robustness checks for 

results excluding dummies for young fields), the exact definition of a young field is not. For 

example, we obtain qualitatively similar results when we define young fields as any with a patent 

stock below 1,000 (see robustness checks). 

I supplement the differencing of data with two-way fixed effects to help control for field and 

time specific factors in the differenced data. As indicated in Table 1, a lagrange multiplier test 

fails to reject the null that these fixed effects are not necessary (Croissant and Millo 2008). The 

equation we estimate in our preferred specifications is: 

 
   

  

         

         

log log log

log log
it i t it it it

it it it it it

y AFF PAT e

YF YF AFF YF PAT
  (8) 

Where γi and ψt are field and year-specific factors and YFit is a dummy variable equal to 1 when 

the observation corresponds to a young field (PATit < 89.5). Lastly, a Breusch-Godfrey test fails 

to reject the null of serial correlation in the idiosyncratic error term eit, so we use White robust 

standard errors clustered by field. 
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Table 1. Test Statistics 

 

Test Null hypothesis Test-Statistic p-Value 

Panel augmented Dickey-Fuller test, 

correcting for cross correlation among 

panels: log(yit + 1) for 1926-2009 

The data series contains a 

unit root 

7.043 1.000 

Panel augmented Dickey-Fuller test, 

correcting for cross correlation among 

panels: Δlog(yit + 1) for 1926-2009 

The first-difference data 

series contains a unit root 

6.209 1.000 

Panel augmented Dickey-Fuller test, 

correcting for cross correlation among 

panels: log(yit + 1) for 1926-2001 

The data series contains a 

unit root 

-1.489 0.068 

Panel augmented Dickey-Fuller test, 

correcting for cross correlation among 

panels: Δlog(yit + 1) for 1926-2001 

The first-difference data 

series contains a unit root 

-6.409 0.000 

Lagrance Multiplier test Two-way fixed effects are 

unnecessary 

138.14 0.000 

Breusch-Godfrey/Wooldridge test for 

serial correlation in panel models 

No serial correlation 

idiosyncratic errors 

3,417.5 0.000 

 

3.3 Results 

The parameters α and β are estimated, and once we account for issues of serial correlation, α  

> 0 and β < 0. We interpret α as measuring the “restocking” effect, as it measures how increases 

in the affinity stock are translated into the flow of new ideas, and β as the “fishing out” effect, as 

it measures the rate at which a field’s ideas are exhausted. Note, unlike traditional ideas 

production functions, we do not need to include measures of knowledge developed in rival fields, 

because AFFit already embeds knowledge spillovers from other fields. Neither do we need to 

determine the knowledge depreciation rate, as the exhaustion of knowledge is instead captured 

directly by the patent stock.  
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I report three estimates in Table 2. Because our estimation methodology uses logs, in 

specifications 1 and 2 we omit observations with 0 patent applications, which accounts for nearly 

5% of our sample. In specification 3, we restore these missing observations by replacing the 

dependent variable with Δlog(1 + yit). Another potential issue with our data is the change in 

patenting trends. Over 1926-1983, patent applications per annum remained in a range between 

25,000 and 75,000. Beginning in 1984, patent applications per year began to rise rapidly, 

peaking at 205,338 in 2001. It is unclear if this acceleration in annual applications reflects an 

increase in innovations (perhaps because firms shifted away from pure science and towards 

commercially viable R&D), or merely an extension of patenting to innovations that previously 

would not have been patented (see Lerner and Kortum 1998, and Gallini 2002 for discussion). 

To assess the significance of this change, specification 2 relies only on data from 1926-1983. 

Estimates for α are positive: a 1% increase in a field’s affinity stock is correlated with a 

0.75-0.9% increase in the annual number of patent applications. That is, a given field applies for 

more patents if the field has more knowledge over how to combine pairs of technological 

elements, or, in the parlance of our first-differenced approach, there is a jump in patent 

applications in the same year that there is a jump in the affinity of pairs the field uses. At the 

same time, a 1% increase in the patent stock is correlated with a 0.2-0.6% decrease in the annual 

number of patent applications.  
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Table 2. Ideas production function 

Time and field fixed effects are included in each regression. All variables are log-transformed 

and first differenced. White robust standard errors, clustered by group, are in parentheses. 

*p<0.1; **p<0.05; ***p<0.01 

 

Explanatory Variable (1) (2) (3) 

Affinity Stock :AFFit 0.901*** 0.897** 0.757*** 

(0.274) (0.357) (0.237) 

    

Patent Stock: PATit  -0.303*** -0.620*** -0.232*** 

(0.099) (0.152) (0.080) 

    

Young Field: YFit  0.102*** 0.070** 0.044** 

(0.027) (0.031) (0.018) 

    

AFFit × YFit  -0.850** -0.735* -0.705** 

(0.336) (0.422) (0.344) 

    

PATit × YFit  0.133 0.388** 0.140 

(0.152) (0.195) (0.138) 

    

Dependent Variable 
ity  ity  1 ity  

Years 1926-2001 1926-1983 1926-2001 

Observations 30,069 22,637 31,226 

 

 

4. Average Patent Impact 

Let Yt be the number of patent applications across all technology fields in year t. Given 

estimates for α and β from the preceding section, we can calculate the marginal effect of a single 

patent grant on Yt via the patent’s impact on knowledge stocks. For each patent in our dataset, 

define AFF’it(p) and PAT’it(p) to be the value of AFFit and PATit if patent p did not exist. The 

patent stock PAT’it(p) is the simpler measure, as it is equal to PATit(p) - 1 if patent p belongs to 

field i and PATit otherwise. To compute AFF’it(p), for every pair of mainlines contained in patent 

p and field i, we swap the old value of ajt for a new value, which we obtain by reducing njt by 
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one. The affinity stock for multiple fields may be impacted in this way, because patents typically 

have spillovers to many fields.  

Let y’it(p) be the expected number of patent applications in field i in year t if patent p did 

not exist, so that y’it(p) is the left-hand side variable of equation (4) if AFF’it(p) and PAT’it(p) 

take the place of AFFit and PATit. If we use equation (4) to solve for Ait in terms of yit, AFFit, and 

PAT’it(p), then we can write: 

 
( ) ( )

( ) it it
it it

it it

PAT p AFF p
y p y

PAT AFF

 
    

     
   

  (9) 

The net impact of a patent, across all fields is defined to be: 

 
( ) ( )

( ) 1 it it
t t it

i it it

PAT p AFF p
Y Y p y

PAT AFF

       
      

     
   (10) 

Note that a patent has a large impact if its mainline-pairs are used by many fields, if it makes 

novel connections, and if the existing Affinity and Patent stocks are small. Figure 3 plots the 

average net impact of a patent using the three parameter estimates presented in Table 2. 
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Figure 3. New Patent Applications Induced by Patent Grant (1926-2001) 

 

The impact of a patent on future applications is initially positive, but trending downward 

across all three specifications. In 1926, every patent grant increases the number of new patent 

applications by an average of 0.002-0.013 per year (1 every 77-500 years). By the end of our 

sample, additional patent grants had a slightly negative impact.  More substantively, in our 1926-

1983 sample (Table 2, column 2), the net impact of patents is negative after 1956. For the period 

1957-1983, the fishing out effect dominates the restocking effect. 
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5. High Impact Fields 

To get a better sense of the fields whose patents have the most impact on subsequent 

innovation, Figure 4 charts the shares of broad NBER technology categories (as defined in Hall, 

Jaffe, and Trajtenberg 2001) among the top 5% of highest impact patent grants.  

 

Figure 4. Top 5% Highest Impact Patents, Share by Field (1926-2001) 

 

From 1926-1940, the Other category has the largest share. Thereafter, the Chemical 

category mostly dominates (occasionally handing off to the Mechanical or Other categories over 

1943-1953) until 1994, at which point Computers and Communication take the lead through the 
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end of 2001. However, if we combine the Electrical & Electronic category and Mechanical 

categories, this is the dominant category over 1926-1967 and 1984-1994. Broadly speaking, over 

our sample, the technologies where each patent most restocked the pool of ideas were electricity 

and machines at the beginning, chemistry in the middle, and computers at the end. 

6. Robustness Checks 

Table 3 presents a series of robustness checks, demonstrating the dependence of the results on 

the inclusion of a young field effect and differencing the data while holding the pairs used by a 

field constant. Columns 1, 3, and 5 omit the young field interactions. Columns 1 and 2 do not 

take the first difference of the data and therefore do not correct for unit roots in the data. Note the 

estimated parameter on the patent stock is positive when we do not difference the data. Columns 

3 and 4 do not hold the set of pairs defining the affinity stock constant. This corresponds to the 

interpretation that the first time a mainline-pair is used by a field, it alerts the rest of the research 

community to the previously unknown utility of the mainline-pair. While the signs of α and β are 

in the correct direction, their magnitudes are attenuated and the coefficient on the affinity stock is 

not statistically distinguishable from zero in the absence of a young field dummy variable. 

Columns 5 and 6 hold the set of mainline-pairs used in a field constant, as in the main body of 

the paper. Note that, without the young-field effect, our estimates of α and β are not statistically 

distinguishable from zero. Column 6 is identical to Column 1 of Table 2. 
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Table 3. Robustness Checks 1 

Notes: Time and field fixed effects are included in each regression. All variables are log-

transformed. White robust standard errors, clustered by field, are in parentheses. 

*p<0.1; **p<0.05; ***p<0.01 
 

 Dependent Variable: Patent Applications 

 

 (1) (2) (3) (4) (5) (6) 

Affinity Stock: 

AFFit 

0.213*** 0.370*** 0.052 0.205** 0.283 0.901*** 

(0.068) (0.080) (0.072) (0.104) (0.209) (0.274) 

       

Patent Stock: PATit  0.641*** 0.597*** -0.130* -0.215** -0.157 -0.303*** 

(0.063) (0.071) (0.074) (0.098) (0.105) (0.099) 

       

Young Field: YFit   1.219***  0.094***  0.102*** 

 (0.310)  (0.028)  (0.027) 

       

AFFit × YFit   -0.243**  -0.196  -0.850** 

 (0.099)  (0.134)  (0.336) 

       

PATit × YFit   -0.149  0.048  0.133 

 (0.122)  (0.127)  (0.152) 

       

Differenced? No No Yes Yes Yes Yes 

Affinity Stock 

Measure 
itAFF  itAFF  itAFF  itAFF  

 
jt

j i t

a


  
 

jt

j i t

a


  

Observations 30,756 30,756 30,069 30,069 30,069 30,069 

 

Table 4 keeps the young-field dummy variable and interaction terms, as in section 3, but 

modifies measures of the knowledge stock and the data sample. In column 1, we replace the 

affinity stock with a count of the number of unique mainline-pairs cumulatively used by a field’s 

patents. In the first difference regression, each observation is the number of mainline-pairs not 

previously used by that field. Our estimate of α using this alternative measure of researcher’s 

knowledge about how to combine technological components in a field is not significantly 
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different from zero. This suggests an important role for measuring the depth of knowledge about 

how to combine technological components, which we capture with a pair’s affinity. 

Table 4. Robustness Checks 2 

Notes: Time and field fixed effects are included in each regression. All variables are log-

transformed and first differenced. White robust standard errors, clustered by group, are in 

parentheses. 

*p<0.1; **p<0.05; ***p<0.01 

 

 

 Dependent Variable: Patent Applications 

 (1) (2) (3) (4) (5) 

Affinity Stock: AFFit 0.115 0.215 1.029*** 1.043*** 0.672** 

(0.106) (0.160) (0.278) (0.300) (0.316) 

      

Patent Stock: PATit  -0.134 -0.139*** -0.290*** -0.273*** -0.485*** 

(0.092) (0.038) (0.098) (0.094) (0.137) 

      

Young Field: YFit  0.091*** 0.075*** 0.128*** 0.123*** 0.056*** 

(0.028) (0.025) (0.026) (0.031) (0.013) 

      

AFFit × YFit  -0.030 -0.246 -0.944*** -1.615*** -0.513 

(0.157) (0.214) (0.339) (0.621) (0.349) 

      

PATit × YFit  -0.092 0.126 0.127 0.153 0.321** 

(0.137) (0.077) (0.158) (0.141) (0.148) 

      

Observations 30,069 30,069 33,024 30,069 30,069 

How model differs from 

Table 1, Column 1 
itAFF  

replaced by 

itPAIR  

Depreciating 

Knowledge 

Stocks 

Years 

expanded to 

1926 - 2009 
 

jt

j i t

a


  

replaced by 

 1

jt

j i t

a
 

  

Young Field 

defined as 

PATit < 1000 

 

It may be that our model fails to properly control for the depreciation of knowledge (the 

extent to which older knowledge grows less relevant to new problems). In column 2, we 

therefore construct analogues of PATit and AFFit that include depreciation to illustrate how our 

results differ from this standard practice. Define the depreciated patent stock in the standard way: 
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      1ˆ 1it it itdPAT y dPAT   (11) 

where ŷit is the number of patents granted to field i in year t. To construct a depreciated version 

of AFFit we assume the value of any given pair to a particular field depreciates at a constant 

exponential rate 1 - δ. Let t0(i,j) denote the first year any granted patent in field i uses mainline-

pair j. The depreciated affinity stock is: 

    






  0 ,

( )

1
t t i j

it jt
j i t

dAFF a   (12) 

Following standard practice (see Aghion et al 2016 for one example), we set δ = 20%. 

With depreciation, our estimates are in the expected direction, but their magnitude is attenuated 

and the coefficient on the affinity stock is statistically indistinguishable from zero. 

After 2001, patent applications fall rapidly in our dataset due to a truncation effect, as we 

only observe patent applications that are subsequently granted by 2010. Throughout the paper, 

we exclude data after 2001. Column 3 assesses the impact of these years by restoring them to the 

sample, but the estimated coefficients are qualitatively similar to those in Table 1, column 1.  

In Table 2, we measure the change in the affinity stock of a field, holding constant the set 

of mainline-pairs the field draws on. The set of mainline-pairs used is defined by those belonging 

to patents granted in period t or earlier. It might be that new knowledge diffuses with a lag 

though. In column 4, we measure the change in the affinity stock of a field, holding constant the 

set of mainline-pairs used as those assigned to any patents in the field granted prior to or during 

period t - 1. Our results are qualitatively unchanged by this alternative definition. 

Finally, in column 5 we define a young field to be any with PATit < 1,000. By this 

definition, 13.5% of observations are defined as belonging to young fields. Coefficients are still 
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in the expected directions and associated p-values remain high, but the coefficient on the affinity 

stock is reduced and the coefficient on the patent stock more negative than in Table 1. 

7. Conclusion  

 This paper presents five stylized facts. First, patents have been making increasingly 

making less novel connections among technology classes since 1947. Second, the extent to 

which these connections are useful to other technology fields grew at a steady rate through the 

early 1980s, but has plateaued since then. Third, the annual flow of patent applications in a given 

technology field decreases over time, but this can be offset by the discovery of novel 

connections. Fourth, using a calibrated knowledge production function, the number of 

subsequent patents induced per patent has been mostly declining since 1926 and may be 

negative. Fifth, the patents that had the biggest positive impact on subsequent patenting tended to 

be electrical/mechanical at the beginning of our period, chemical in the middle, and computer-

related in the end. 

 These results are dependent on correctly controlling for serial correlation, the inclusion of 

explanatory variables related to “young” fields, and measuring the depth of knowledge about 

how to combine a pair of knowledge. They are robust to changes in the years under 

consideration, the precise definition of a “young field”, and the way we measure the change in a 

field’s “affinity stock.” In this conclusion, we discuss the limitations of this paper, and relate it to 

existing literature. 

7.1. Limitations 

The above findings have several important caveats. In terms of the motivating theory, as 

noted at the outset, models of combinatorial innovation frequently involve R&D to discover new 
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technological elements for combination (Weitzman 1998, Akcigit, Kerr, Nicholas 2013). This 

article has taken the set of technological components available for combination as given, and 

therefore is unable to assess whether the rate of new technological components is increasing to 

offset the decline in novel combinations. Relatedly, the theoretical framework set up in this 

model has little to say about the formation of new technological fields. Given the fishing out 

effect, the continuous creation of new fields (with low patent stocks) represents one way to 

continue the innovation process indefinitely. More broadly, combinatorial models of discovery, 

while useful, are surely incomplete. Other factors driving innovation may well offset the 

negative trends we highlighted. Finally, as noted in the introduction, this paper has not attempted 

to determine whether the R&D trends documented here are socially suboptimal. 

Second, data limitations may also limit the robustness of our findings. Data on R&D 

spending by technology field is unavailable, and so this paper misses an important input of the 

ideas production function. However, it is notable that recent work by Bloom et al. (2016) finds it 

is taking more and more R&D spending to get the same quality improvements across a range of 

sectors, consistent with this article’s cautionary take on the future of innovation. Furthermore, 

patents are themselves an imperfect measure of innovation: not all ideas are patented (especially 

those developed outside the private sector) and those that are vary tremendously in their value. 

Most patents are worth little, but a small number are very valuable. Clancy (2017) shows patents 

that forge more novel connections between their mainlines are more likely to be renewed, and 

therefore more valuable to the holders. This could imply that patented inventions may be 

becoming less valuable, in addition to less novel. This paper, however, does not adjust for the 

“quality” of a patent, as it is not clear whether patents with low value contribute less to the 

knowledge stocks developed in this paper. Still, it may be that an increase in low-quality 
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“copycat” patents is responsible for the decline in average measured impact, but that we 

continue to produce just as many novel, high-quality patents as ever. This argument is 

particularly compelling after 1984, when patent applications expanded rapidly. However, our 

results are actually most pessimistic when we restrict our sample to the period 1926-1984. 

Lastly, as patents are an imperfect proxy for innovation, mainlines are an imperfect proxy 

for pre-existing technological components. For example, as noted in section 1, many patents are 

assigned less than two mainlines. We interpret this as a failure of data to identify all the 

components used by the patent, not as a refutation of the idea that combination is inherent in all 

innovations. Locating more precise measures of technological components (i.e., words in patents, 

citations, or subclasses at a more disaggregated level) could clarify if the explanatory power of 

these results is biased by measurement error. 

7.2 Will Innovation Get Harder? 

The evidence presented may presage a slowdown in innovation in the coming decades: 

patents are increasingly less novel, the number of spillovers has stopped increasing, and their net 

impact on future patent applications is trending to zero, if not already negative. The extent to 

which we are pulling ideas out of the pool is growing relative to the restocking rate, and may 

well have surpassed it. 

These findings align with Arora et al. (2015), which suggests the private sector has been 

withdrawing from basic science to focus more exclusively on applied R&D, since at least 1980. 

Basic science is believed to generate the most novel, disruptive ideas, and to have the most 

spillovers and follow-on applications. A reduction in this kind of research is consistent with our 

findings. Note one hypothesis put forward by Arora et al. (2015) for the private sector’s 
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withdrawal from basic science is the narrowing scope of firms, as firms with a narrower range of 

expertise are less likely to benefit from the unpredictable applications stemming from basic 

research. This paper suggests there may be a complementary supply side effect. When 

innovation is about making new connections between previously disparate technological 

disciplines, firms with expertise in a wider array of disparate disciplines will be better placed to 

make such connections.  

This work also supports the hypothesis that innovation’s outlook is deteriorating because 

the supply of innovations from major “industrial revolutions” are being exhausted, an argument 

developed at length in Gordon (2016). The so-called “second industrial revolution” consisted of 

the innovations stemming from electricity, chemicals, plastics, and a host of other improvements 

in infrastructure and health, while the “third industrial revolution” is associated with information 

technology. Figure 4 is broadly consistent with the idea that applications of the second industrial 

revolution (electricity, chemicals, and plastics) drove innovation for much of the 20th century, 

while the applications of the third industrial revolution are ongoing. A long-run decline in patent 

impacts is also consistent with the broad theme that the second industrial revolution’s gifts have 

been petering out. The small uptick in patent impacts in the late 1990s is also consistent with the 

argument that the third industrial revolution is real, but not as potent as the second. 
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Supplemental Figures 

 

Figure S1: Histogram – Patent Stock, horizontal axis log-scale 

Note: Young field observations (PATit < 89.5) are shaded in lighter gray. 
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Figure S2: Histogram – Affinity Stock, horizontal axis log-scale 
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Figure S3: Histogram – Patent Applications, horizontal axis log-scale 

Note: There are an additional 1,361 observations with yit = 0. 
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Figure S4. Average Novelty per Patent and Mainlines per Patent (1836-2010) 
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Figure S5. Spillover Fields per Patent and Mainlines per Patent (1836-2010) 
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