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Abstract 

Mandates, which establish minimum use quotas for certain goods, are becoming increasingly popular 
policy tools to promote renewable energy use. In addition to mitigating the pollution externality of 
conventional energy, clean energy mandates have the goal of promoting research & development 
(R&D) investments in renewable energy technology. But how well do mandates perform as 
innovation incentives? To address this question, we develop a partial equilibrium model to examine 
the R&D incentives induced by a mandate, and compare this policy to two benchmark situations: 
laissez faire and a carbon tax. Innovation is stochastic and the model permits an endogenous number 
of multiple innovators. We present both analytical results and conclusions based on numerical 
simulations. We find that the optimal mandate is larger than it would be without the prospect of 
innovation, that neglecting the outlook for innovation significantly reduces welfare, and that the 
optimal mandate is more sensitive to assumptions about the innovation process than an optimal 
carbon tax.  Furthermore, we find mandates create relatively strong incentives for R&D investment 
in low-quality innovations, but relatively weak incentives to invest in high-quality innovations. We 
also rank policies by expected welfare. An optimal carbon tax has higher expected welfare than an 
optimal mandate, and both have higher expected welfare than laissez faire. Moreover, in our 
endogenous innovation setting a stronger result obtains: a simple carbon tax equal to the damage 
from pollution (unadjusted for the prospect of innovation) has higher expected welfare than an 
optimal mandate. 
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Mandates have emerged as a key policy tool to promote the use of biofuels and other renewable 

energy. Such policies set a target for renewable energy production, and it falls upon the producers 

and suppliers of energy to meet this quota. In the United States, the use of mandates is one of the 

distinctive features of the 2007 Energy Independence and Security Act (EISA), which set out 

requirements for overall biofuel use as transportation fuel in the United States to grow to 36 billion 

gallons by 2022 (Stock 2015).1 These mandates have been effective at spurring the growth of the 

corn-based ethanol industry, which steadily accumulated the capacity required to produce the 

mandated targets in a timely fashion (Moschini, Cui and Lapan 2012). But in order to meet the 

ambitious targets set out by EISA, a major role is envisioned for advanced biofuels such as cellulosic 

ethanol: 21 of the 36 billion gallons of biofuels mandated by 2022 are supposed to come from 

advanced biofuels. So far, however, the US production capacity for cellulosic ethanol has severely 

lagged the originally intended levels. A crucial element in this setting is that corn-based ethanol is 

produced with a mature technology, and the EISA mandate was essentially meant to force adoption 

of this technology. Cellulosic ethanol, by contrast, required technological breakthroughs to make it 

scalable and commercially viable at the time EISA established the mandates schedule. For such 

advanced biofuels, therefore, mandates were really supposed to spur invention (rather than merely 

adoption) of innovations. Yet innovation in advanced biofuels appears to be stalling (Albers, 

Berklund and Graff 2016). 

The effectiveness of mandates to promote innovation has been largely ignored by the considerable 

literature on the economic impacts of biofuel policies.2 Is the purpose of promoting invention and 

development of new technologies a reasonable aspiration for a policy tool such as mandates? A 

careful reading of real-world policy experiences in the related context of technology-forcing policies 

suggests grounds for skepticism: “Technology-forcing performance standards have had a mixed record in inducing 

innovation. Regulators can find it difficult to obtain information about the status of technologies that is accurate enough 

to allow them to set standards that both can be achieved and will induce real innovation. Such standards may be 

effective when the path to a technological solution is reasonably clear, but are less likely to be effective in stimulating 

cost-effective and broad-based breakthrough technologies” (Arrow et al. 2009). As for theoretical models 

comparing environmental policy tools in terms of their innovation-inducing potential, they have 

emphasized the dichotomy of prices versus quantity tools and have privileged the comparison of 

carbon taxes with (tradable) pollution permits.3 It is unclear how existing results may apply to 

mandates, which differ from pollution permits by establishing minimum levels of production with a 
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“clean” technology, rather than maximum levels of production with a “dirty” technology. This 

distinction matters when the price of energy changes (as it will when innovation changes production 

costs) because the margin on which energy supply can adjust varies across the policies.  

The purpose of this paper is to directly investigate the effectiveness of mandates as a policy tool to 

promote environmental innovation in the context of an explicit model of private R&D investments. 

The stochastic innovation model that we develop is meant to capture some essential long-run 

features of the innovation process and envisions three distinct stages: the choice of policy 

instrument and its level; the forward-looking decision of innovators to invest in R&D, given the 

policy context and their information about technological opportunity; and, ex post licensing of 

successful innovations to adopters, followed by production and consumption decisions. Specifically, 

we consider a market with clean and dirty energy sources that are close substitutes, e.g., renewable 

energy and fossil fuels. The dirty energy imposes a negative externality on society. The clean energy 

has no such externality, and the cost of producing it can be lowered through R&D. Following Parry 

(1995), Laffont and Tirole (1996) and Denicolo (1999), we view the R&D sector as separate from 

the production sector adopting the new technology. Policies such as mandates can affect R&D 

because they influence the profit opportunity that motivates innovators. In this setting, no 

environmental policy measure can lead to a first best outcome by itself. The effectiveness of 

mandates at spurring environmental innovation, therefore, is best understood as compared to a well-

defined alternative. Hence, in this paper we compare the innovation effects of a mandate with that 

of a carbon tax (the prototypical formalization of a price-based environmental policy).4 

Perhaps surprisingly, the process of environmental innovation is often modeled deterministically.5 

Also, the simplifying condition that innovation is undertaken by a single agent is often maintained. 

In our model we relax both of these conditions. Because the crux of the matter is invention of new 

technologies, rather than adoption/diffusion of existing technologies, we develop an explicit 

stochastic framework by positing that a firm that invests in R&D gets an independent random draw 

of a cost-reducing technology for the production of renewable energy. Furthermore, having 

introduced the problem of a single innovator, the focus of the paper is squarely on the case of 

multiple innovators. For this purpose, we implement a novel free-entry representation of an 

innovation contest, following Spulber (2013), where the number of innovators is endogenously 

determined. In our framework, multiple innovators can raise welfare through two channels: an 

increase in the number of innovating firms increases the expected quality of the best innovation that 
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will be discovered, and, the ex post royalty rate for the best innovation is reduced by the presence of 

competitors. This formulation also effectively captures the welfare spillover effect of innovations 

and the associated appropriability problem that is one of the roots of R&D under-provision.6 Our 

model also maintains a plausible presumption about the innovation process: by the time they choose 

R&D investments, firms have better information than policy makers did when they set the policy.  

Two additional features of our modeling framework deserve a brief discussion. First, we assume that 

the marginal environmental damage of the externality is constant. This commonly invoked 

condition, together with the assumption that the conditional distribution of firms’ innovation 

outcomes is uniform, simplifies the analysis and permits the derivation of explicit results. Besides its 

analytical attractiveness, this assumption might be appropriate for the case of renewable energy. For 

example, advanced biofuels can only address a small portion of the overall energy needs of the 

economy, and innovations in this area are likely to have a limited impact on the overall level of 

carbon emission. Furthermore, the energy sector’s emissions are small relative to the cumulative stock 

of emissions, which is what ultimately drives climate change. Hence, a linear damage function is 

arguably appropriate in our context. Second, in studying the R&D incentive of mandates we assume 

that policymakers commit to the level of the chosen instruments. That is, in this paper we do not 

address the well-known time consistency issue: once new less-polluting technologies are developed, 

policy makers might want to change environmental rules, and this ex post policy adjustment alters the 

innovator’s ex ante incentives (Laffont and Tirole 1996, Denicolo 1999, Kennedy and Laplante 

1999). Although what assumption about commitment is most appropriate may depend on the real-

world policy context of interest, the issue of time consistency is clearly germane. This paper provides 

a first look at the innovation role of mandate policies, and the study of commitment issues is left for 

future work.  

Our results show that a mandate is relatively good at incentivizing incremental innovation but a poor 

spur to breakthrough innovation, as compared with a carbon tax. A carbon taxes is more likely to 

realize either a very good innovation or none at all, whereas mandates induce a comparatively low 

dispersion of realized technologies (at least some form of innovation is likely to be realized). A 

mandate can improve upon laissez faire, but the prospect of innovation is essential for the desirability 

of mandates and, unlike a carbon tax, the mandate’s level must be carefully tuned to incorporate its 

expected effects on innovation. In our numerical simulations, carbon taxes consistently achieve 

higher expected welfare than mandates. Indeed, for the general case of competitive innovation, even 
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the naïve carbon tax also has higher expected welfare than an optimal mandate.   

The Model 

We view innovation as a purposeful economic activity undertaken by R&D firms seeking to profit 

from licensing the implementation of their successful ideas. Specifically, we focus on the invention 

of a new technology to produce cleaner energy. The model envisions two forms of energy: 

conventional (dirty) energy, denoted 1Q , and renewable (cleaner) energy (e.g., advanced biofuels), 

denoted 2Q . Innovation reduces the cost of producing clean energy. Consumers are assumed to 

have quasilinear preferences for a numeraire good and energy Q , with the aggregate inverse demand 

for energy given by ( )P Q , where ( ) 0P Q′ < . The two sources of energy are perfect substitutes from 

the consumer’s perspective, and thus we can represent total energy used as 1 2Q Q Q= + .7 Given the 

premise that renewable energy is less polluting than conventional energy, without much loss of 

generality it is assumed to have zero emissions. Total damage from emissions therefore can be 

represented as 1X xQ= , where x  is the (constant) marginal environmental damage rate. 

Innovation contexts are inherently dynamic. To capture the salient features of the problem at hand, 

and yet retain the tractability of a static framework, we develop an “ideas” approach to modeling 

innovation (Scotchmer 2004, Spulber 2013). Each potential innovator has an idea for a distinct 

research project that costs k  to implement and yields a draw of θ  from the conditional distribution 

function ( )F θ ω . The parameter θ  measures the quality of the cost-reducing innovation, whereas 

ω  characterizes technological opportunity, i.e., the state of scientific and engineering knowledge that 

can be applied towards the problem of producing renewable energy. This is best thought of as 

knowledge exogenously developed in relevant fields (e.g., biology, chemistry, material sciences, 

computer science, etc.) and therefore not responsive to targeted policies such as those considered in 

this paper.  

The structure of the model is represented in Figure 1, where the timeline of decisions (listed at the 

bottom) is illustrated together with the timeline of information revelation (listed at the top). 

Innovators first receive a draw of ω  from a cumulative probability distribution ( )G ω  with domain 

[ ]0,ω . Given ω , the researcher chooses whether or not to pay k  to obtain a draw of θ  from the 

conditional distribution function ( )F θ ω . Whereas the distribution function ( )G ω  is unrestricted, 
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apart from the standard monotonicity and continuity properties, the analytical results that we present 

rely on postulating that ( )F θ ω  is a uniform distribution. The density function of this distribution is: 

(1) [ ]if 
otherwise

1 0,
( )

0
f

ω θ ω
θ ω

∈
= 


    

Note that both the expected value and the upper bound of the innovation draw θ  are increasing in 

the technological opportunity parameter. But because even the most promising innovation can fail, 

the lower bound on innovation quality is always zero.  

Whereas innovators are assumed to observe the signal of technological opportunity prior to making 

the R&D investment, we presume that the policy setting is determined in advance of the realization 

of this signal. To evaluate and compare policies, therefore, we will take the ex ante perspective of 

policy makers who know the distributions ( )G ω  and ( )F θ ω  but do not know the actual 

information possessed by innovators. In this setting, we evaluate the effectiveness of mandates as a 

policy tool to both ameliorate the externality and promote innovation. For a meaningful benchmark, 

we compare mandates with a carbon tax, and also to the laissez faire (no policies) situation. Although 

each firm undertakes at most one research project, in our competitive innovation framework the 

aggregate supply of R&D projects responds to changing incentives through the endogenous number 

of firms who undertake innovation projects.8  

A distinctive feature of the innovation context that we wish to model is that the renewable source of 

energy is unlikely to be able to completely supplant the conventional source, and, relative to the 

latter, it is expected to be at a production disadvantage. Indeed, the issue of scalability is a critical 

limitation of many carbon-neutral new technologies and renewable energy alternatives, including 

biofuels, solar and wind (Galiana and Green, 2009). To capture this asymmetry, we assume that the 

production of the older product displays constant returns to scale at the industry level, whereas 

renewable energy is produced under decreasing returns to scale at the industry level. Furthermore, 

whereas the analysis that we present does not restrict the shape of the inverse demand function 

( )P Q , to obtain clear results (especially for the competitive innovation case) we restrict attention to 

linear industry marginal cost schedules. If 1 1( )C Q  and 2 2( , )C Q θ  denote the industry cost functions 

for the two products, conventional energy is assumed to be produced by a perfectly competitive 

industry with constant marginal cost, whereas the new clean technology displays an upward-sloping 
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marginal cost function. Specifically: 

(2) 1 1
1

1

( )C Q c
Q

∂
=

∂
             

(3) 2 2
2 2

2

( , )C Q c Q
Q

θ
θ

∂
= − +

∂
         

where 1c  and 2c  are fixed parameters, with >2 1c c , and θ  captures the impact of innovation.9  

These marginal costs are illustrated in Figure 2. Initially, 0θ = , but, as exemplified in (3), innovation 

lowers the marginal cost of producing renewable energy. Innovation is understood as producing 

know-how, and this knowledge is patentable. Innovators produce a blueprint for a new technology, 

and can license these blueprints to the competitive production sector that produces renewable 

energy. Licensing is presumed to take the forms of a fixed royalty rate r  per unit of 2Q .10 

Mandates 

A mandate policy specifies a minimum amount of renewable energy to be used as part of the 

production/consumption portfolio: distributors must ensure that 2Q Q≥ , where Q  is the 

mandated minimum quantity of total renewable energy. The implementation of this mandate 

postulates the existence of a competitive blending sector that combines energy from two sources: 

conventional energy, priced at its constant marginal cost 1c , and renewable energy, priced at its 

(increasing) marginal cost 2 2 2 2C Q c r Qθ∂ ∂ = − + + . The specifics of how the mandate is enforced 

are not important in our competitive context.11 What matters is that the extent of the mandate 

affects the price of blended fuel. The zero profit condition for the competitive blending sector 

ensures that, for a given mandate Q  of renewable energy and corresponding quantity ( )Q Q−  of 

conventional energy, consumers are charged a blend price ( )P Q  that is the weighted average of the 

energy input costs (de Gorter and Just 2009, Lapan and Moschini 2012): 

(4) ( )1 2( ) Q Q QP Q c c r Q
Q Q

θ−
≡ + − + +                                                                                  

The issue of feasibility of the mandate should be noted at this juncture. Feasibility is relevant 

because how much consumers are willing to buy at the blend price is still governed by the (inverse) 
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demand function ( )P Q . Because consumers (and competitive suppliers) cannot be coerced, not 

every arbitrary mandate Q  is feasible.  Therefore, we assume the following condition.  

Condition 1. The mandate is feasible in that there exists an equilibrium total quantity that 

solves ( *) ( *)P Q P Q=  and satisfies *Q Q≥ . 

Figure 3 illustrates the case of a feasible mandate (Q′ ) and that of an unfeasible mandate (Q′′ ). For 

a fixed Q , and given that 2 1c Q c+ > , the blend price ( )P Q  is decreasing in Q  and asymptotically 

approaches 1c  from above as Q  increases. Depending on the shape of the inverse demand function 

( )P Q , there may be multiple solutions to ( *) ( *)P Q P Q=  (in which case one may appeal to stability 

conditions to select the relevant equilibrium) or, for unfeasible mandates, none at all.  

The formulation in (4) presumes that the mandate is binding, typically the policy-relevant case of 

interest. The following condition ensure this is the case (we relax this assumption in our 

numerical analysis section). 

Condition 2. The mandate is large enough to always bind, i.e., ( )2 1Q c cω≥ − − . 

Note that this sufficient (but not necessary) condition simply requires that the best possible new 

technology is insufficient to exceed the mandate at a price competitive with fossil fuels.  

Laissez faire and the carbon tax 

Without a mandate, we must explicitly consider how the quantity of renewable energy supplied 

varies with the realized innovation θ . For both the laissez faire situation (absence of government 

policy) and the case of a carbon tax, the residual inverse demand curve facing producers of 

renewable energy can be written as:  

(5) ( ) if 
otherwise

1
1 2 1

2 2
( )

( )
c t Q P c tP Q
P Q

− + ≤ +
= 


    

where t  denotes the carbon tax (per unit of dirty energy). For the laissez faire, 0t = . In such a case, 

if clean energy is priced below the cost of dirty energy ( 1c ), then it captures the entire market; if it is 

priced above the cost of dirty energy, demand for clean energy falls to zero; and, any quantity 



8 
 

− ∈  
1

2 10, ( )Q P c  can be sold when clean energy is priced at the cost of dirty energy.  

As noted earlier, the realistic scenario is that the new renewable energy source does not completely 

replace the pre-existing conventional source. That is, the innovation is “nondrastic” in Arrow’s 

(1962) terminology. By condition 2, it is impossible to produce more than the mandate at a cost 

competitive with fossil fuels. Because any feasible mandate must satisfy 1
1( )Q P c−< , this also 

implies all innovations are non-drastic.  

First best allocations 

Before considering the effects of innovation, it is useful to note an important asymmetry between 

the two policy tools when in fact innovation is not possible. 

Remark 1. A mandate 0Q >  is incapable of achieving the first best allocation in the absence of 

innovation. 

This result is well known (Holland, Hughes, and Knittel 2009). When innovation is not possible, the 

first best solution calls for a total energy consumption that satisfies  1 2 1( )P Q Q c x+ = + , and for a 

level of renewable energy { }2 2max 0,Q Q=  , where 2Q solves 2 2 1c Q c xθ− + = + . These 

allocations are clearly achieved by the Pigouvian tax t x= , but not by any mandate. For example, 

whenever ≥ +2 1c c x  the optimal allocation in the absence of innovation requires 1 1( )P Q c x= +  

and 2 0Q = . This mix of energy is impossible to achieve with an instrument that mandates 2Q Q≥ .   

Remark 1 highlights the fact that the prospect of innovation is essential for the (possible) desirability 

of a mandate policy, which reinforces the main motivation for the analysis of this paper. When we 

do allow for the possibility of innovation, neither policy instrument alone can achieve the first best 

allocation—not surprisingly, given that our model combines a pollution externality with innovation 

externalities. The analysis that follows, therefore, largely pertains to second best outcomes (although 

first best allocations are used as a benchmark in the numerical analysis section). 

R&D with a Single Innovator 

To understand how environmental policy tools affect private R&D decisions, it helps to first 

consider the case when there is only one firm capable of innovating (this assumption is relaxed 
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later). We consider mandates, laissez faire and the carbon tax in turn. 

Innovation under mandates 

To characterize the innovator’s decision problem, consider first the licensing stage for an arbitrary 

innovation of quality θ . The innovator essentially acts as a monopolist with a competitive fringe, 

and sets the per-unit royalty r  to maximize profits conditional on the adoption constraint by the 

competitive producers of renewable energy. Thus, the innovator’s optimal royalty maximizes rQ , 

such that 2 2c Q r c Qθ− + + ≤ + . This constraint represents the option that clean producers have 

to meet the mandate by using the pre-innovation technology (for which 0θ = ). With a binding 

mandate, the profit-maximizing license is *r θ= . The maximum licensing profit attainable by an 

innovator with technology θ , under a binding mandate, is therefore m Qπ θ= , and the expected 

licensing profit of the innovator with technological opportunity ω , denotes ( )mπ ω , is: 

(6) ( ) 2m Qπ ω ω=     

The lower bound of technological opportunity for which innovation occurs under a mandate, 

denoted ˆmω , solves ˆ( )m m kπ ω = , and therefore ˆ 2m k Qω = . This threshold is increasing in the cost 

of R&D and decreasing in the mandate.  Under a mandate policy, therefore, R&D occurs with 

probability ˆ1 ( )mG ω− . 

Turning to welfare, once a mandate is imposed, the price and quantity of energy produced are not 

changed by (nondrastic) innovation, and therefore there is no change in consumer surplus or in the 

damage from the externality. The producer surplus of clean firms is also unaffected by innovation, 

because the innovator fully appropriates the reduction in cost brought about by the innovation. 

Accordingly, the change in welfare due to innovation is purely derived from licensing profits less 

R&D costs, so that expected welfare under a mandate is given by: 

(7) [ ] 0 0 0 ˆ
( )

2m

m m m QE W S X k dG
ω

ω

ω ω = + Π − + − 
 ∫    

where 0
mS , 0

mΠ , and 0
mX  denote the pre-innovation levels of consumer surplus, producer surplus of 

renewable energy firms, and environmental damages, respectively, that occur under the given 

mandate policy. 
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Given equation (7), the level of the mandate that maximizes expected welfare is affected by the 

prospect of innovation. In fact, we find the following.  

RESULT 1. The level (stringency) of the mandate that maximizes welfare is increased when 

the regulator takes into account its impact on innovation. 

To see why this is the case, consider the case where innovation is not possible. Still, because of the 

unpriced externality, use of some renewable energy is desirable. In this case, the optimal static 

mandate (i.e., ignoring the prospect of innovation), denoted 0Q , is such that: 

(8) 0 0 0

( ) ( ) ( )

0
m m mS X

Q Q Q
− + −

∂ ∂Π ∂
+ − =

∂ ∂ ∂
    

where the sign of the derivative is given below each term. This optimality condition pins down the 

optimal mandate in the absence of innovation (assuming the usual concavity conditions are 

satisfied). However, accounting for the fact that innovation is possible, when setting the mandate, 

changes the first order condition. The optimal mandate, denoted 0
IQ , now solves: 

(9) 

( ) ( ) ( )

( )
( )

ω

ω

ω ω
+− + −

∂ ∂Π ∂
≡ + − + =

∂ ∂ ∂ ∫0 0 0
0 ˆ

( ) 0
2m

m m m
I S XZ Q dG

Q Q Q
   

Note that the indirect impact that arises because the policy change affects ω̂m  vanishes (a 

consequence of the envelope theorem). It is apparent that, when evaluated at 0Q , 0( ) 0Z Q > . This 

implies that welfare, when evaluated at 0Q , is increasing in Q , so that the mandate should be 

increased relative to the optimal mandate without innovation. The intuition for Result 1 is that 

innovation increases welfare, and a larger mandate increases the incentive to innovate. 

Innovation under laissez faire 

To characterize the innovator’s decision problem under laissez-faire, again consider the licensing stage 

for an arbitrary innovation of quality θ . The innovator’s optimal royalty maximizes 2rQ , where the 

demand from the competitive adopting clean energy sector, for 2 0Q > , satisfies 

2 2 1c Q r cθ− + + = . When 2 1c cθ− ≥  there is no strictly positive license fee that can result in any 
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adoption. In such a case, the innovation is insufficient to be cost-competitive with the dirty 

technology. Thus, licensing only occurs if the innovative step is sufficiently large. More specifically, 

2 1
ˆ c cθ ≡ −  defines the minimum innovative step beyond which the innovation becomes profitable 

(see Figure 2). Substituting in θ̂  for the clean energy producer’s production constraint, licensing 

revenues can be written as ( )θ θ− −ˆr r  when ˆθ θ≥ . The optimal royalty is ˆ* ( ) 2r θ θ= − , and at 

this price the quantity licensed is 2
ˆ( ) 2Q θ θ= − .  The maximum profit an innovator with 

technology θ  can obtain, when ˆθ θ≥ , is 2ˆ( ) 4π θ θ= −  (and, of course, 0π =  when ˆθ θ< ). 

A researcher with technological opportunity ˆω θ≤  expects zero profit (no possible innovation is 

viable). For ˆω θ>  the innovation can still yield zero profit whenever ˆθ θ< , which happens with 

probability θ̂ ω , and thus the researcher expects to make positive profit with probability ˆ1 θ ω− .  

Expected licensing profit conditional on ω , denoted ( )π ω , can therefore be written as: 

(10) ( )
3

2
ˆ

ˆ ˆ1 ( )ˆ1 ( )ˆ 124( )
d

ω

θ

θ ω θπ ω θ θ θ
ω ωω θ

    −
= − − =   

−  
∫    

A risk neutral innovator will choose to conduct research if this expected licensing profit exceeds the 

costs of R&D, i.e., when ( ) kπ ω ≥ . This implies the existence of a threshold ω̂ , which satisfies 

ˆ( ) kπ ω = , such that innovation is undertaken if and only if ˆˆω ω θ> ≥ .  

To understand how innovation affects welfare we note that, given the presumption that innovation 

is nondrastic, renewable energy is always priced at 1c . This means that the total quantity of energy 

Q , and consumer surplus, are not affected by innovation. Instead, innovation affects the share of 

energy produced by renewable sources, and reduces the status quo ante damage from externalities by 

2xQ . Accounting for the minimum innovation step, and proceeding analogously to (10), expected 

clean energy is [ ] 2
2

ˆ( ) 4E Q ω θ ω= − . License profits are given in equation (10). Clean producer 

profits can be shown to be 3ˆ( ) 24ω θ ω−  in expectation. All told, therefore, expected welfare in the 

absence of government intervention is 
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(11) [ ] ( )
3 3 2

0 0 ˆ

ˆ ˆ ˆ( ) ( ) ( )
12 24 4

E W S X x k dG
ω

ω

ω θ ω θ ω θ ω
ω ω ω

  − − −
= − + + + −  

  
∫    

where 0S  and 0X  denote the pre-innovation levels of consumer surplus and externality damage, 

respectively, and the integral in (11) is the expected contribution of innovation to welfare.  

Innovation under a carbon tax 

In the laissez-faire welfare is suboptimal because, inter alia, the uncompensated negative externality 

means there is excess production of dirty fuel. The canonical solution to an externality of this type is 

a Pigouvian tax on the dirty fuel, e.g., a carbon tax. Because use of fossil fuels incurs a social cost x  

per unit, if one ignores the prospect of innovation the tax should be set at t x= . We will use this 

“naïve” carbon tax as the benchmark in our analytical results, and consider the optimal carbon tax 

(which also accounts for the prospect of innovation) in the numerical section. Performance under a 

naïve tax is also of interest when the market under question is small relative to all sources of carbon. 

With a unit tax t  on fossil fuel, clean producers face the inverse residual demand curve given in (5). 

As illustrated in the previous section, some innovations may be of insufficient size to be 

competitive, so that the characterization of the impact of innovation needs to always account for the 

probability that an innovation of sufficient size actually materializes. To simplify the exposition, and 

without much loss of generality, it is convenient to maintain the following. 

Condition 3. The pre-innovation renewable energy technology satisfies 2 1c c x= + . 

This parametric case restricts attention to the situation where renewable energy is on the brink of 

being competitive, provided the externality posed by the dirty technology is appropriately taxed. 

Condition 2 guarantees that the optimal supply of renewable energy is positive for any 0θ > (the 

parameter θ̂  corresponding to the minimum inventive step can be dropped from the analysis).  

Given Condition 3, the optimal license fee and equilibrium quantity of renewable energy satisfy 

2* 2r Q θ= = . The maximum licensing profit for an innovator possessing an innovation of quality 

θ , given the existence of the carbon tax t , is: 2 4tπ θ= . Hence, the innovator’s expected profit 

conditional on technological opportunity, denoted ( )tπ ω , is given by: 
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(12) 2( ) 12tπ ω ω=     

Given the existence of a tax t , the threshold ˆtω  for R&D to be conducted satisfies ˆ( )t t kπ ω = , and 

thus ˆ 12t kω = . It is readily verified that this threshold is lower than under laissez-faire, i.e., ˆ ˆtω ω< .  

Similarly to the laissez-faire situation, with a carbon tax a non-drastic innovation does not affect the 

total quantity of energy nor consumer surplus. Innovation now improves welfare, through its effect 

on the cost of producing clean fuel, in two ways: license profit to the innovator, and producer 

surplus to clean energy producers (recall that the innovator behaves as a monopolist who cannot 

price discriminate). The former was derived in (12). The producer surplus of clean producers can be 

shown to be 2 8θ , or 2 24ω  in expectation. Combining all elements, expected welfare with 

innovation, given the carbon tax t x= , is: 

(13) [ ] ( )
2 2

*
0 ˆ 12 24t

E W S k dG
ω

ω

ω ω ω
 

= + + − 
 

∫     

were *
0S  denotes the pre-innovation consumer surplus under the naïve carbon tax. When compared 

with (11) we note that the term related to the environmental externality is absent. But welfare is still 

suboptimal because innovation is underprovided from a social point of view (the appropriability 

problem is only partially solved by patents, as discussed in Clancy and Moschini 2013).  

Mandate vs. carbon tax: an initial comparison 

The comparison that is of most interest is between the “optimal” mandate and the “optimal” carbon 

tax. We cannot characterize this comparison analytically, but we will pursue it in the numerical 

analysis section. It is instructive, however, to highlight some of the tradeoffs between optimal 

mandates and naïve carbon taxes. Focus on the naïve carbon tax benchmark is of interest because, 

as we show in the numerical results presented later, this tax level is actually close to the optimal 

carbon tax. More generally, the naïve carbon tax may be more relevant in a real-world policy setting: 

it may be infeasible to tailor the tax specifically to innovation prospects in the renewable fuel sector, 

if the tax is actually meant to address carbon use in the wider economy. We first note that if a 

mandate outperforms a naïve carbon tax, it must do so through its impact on innovation. 

Remark 2. If expected welfare under a mandate is greater than expected welfare under a naïve 

carbon tax, then the contribution to welfare due to innovation is greater under a mandate.  
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This follows from Remark 1 and equations (11) and (13). The contribution to welfare due to 

innovation is given by the term under the integrals in equations (11) and (13). These consist of the 

net profits of the innovator in both cases, as well as producer surplus for a carbon tax. For any given 

ω , whether net profits under a mandate are larger than net profits plus producer surplus under a 

carbon tax depends on Q . In the next result, we show that a Q  that induces R&D with the same 

probability as a carbon tax is not large enough for the mandate’s net profits to exceed the carbon 

tax’s net profits plus producer surplus. As a corollary, if a mandate ever achieves higher welfare than 

a naïve carbon tax, it must do so by inducing R&D more frequently than a carbon tax. In our model, 

that means inducing R&D even when technological opportunity is relatively low.  

For the comparison that presumes the same R&D probability, we need to require that the 

innovation thresholds be the same under the two policies, i.e., ˆ ˆm tω ω= . Note that this (analytically 

convenient) criterion also equalizes the expected quality of realized innovations.   

RESULT 2. If a mandate is chosen so as to provide the same R&D incentive as the naïve 

carbon tax, then expected welfare is higher with the carbon tax. 

The proof of this result starts by noting that Result 2 will hold so long as: 

(14) ( ) ( )ω ω

ω ω

ω ω ωω ω
    + + − ≥ + Π − + −   
    

∫ ∫
2 2

*
0 0 0 0ˆ ˆ12 24 2t m

m m m QS k dG S X k dG    

Because, as noted in Remark 1, the given carbon tax achieves the first best (absent innovation) but 

the mandate does not, it must be that *
0 0 0 0

m m mS S X> + Π − . Next, recall that the threshold under the 

naïve carbon tax t x= , given Condition 3, was shown to be ˆ 12t kω = , so that to ensure ˆ ˆm tω ω=  

one needs / 3Q k= . Hence, Result 2 will hold when the gains from innovation under the carbon 

tax exceed those under the mandate, i.e.,  

(15) ( ) ( )
2 2

ˆ ˆ
/ 3

12 24 2t t

kk dG k dG
ω ω

ω ω

ω ω ωω ω
   

+ − ≥ −   
  

∫ ∫    

where the fact that the mandate is calibrated so that ˆ ˆm tω ω=  implies that the integrals in (14) have 

the same bounds. A sufficient condition for equation (15) to hold is that the integrand in the LHS 

exceed the integrand in the RHS for each ω . It is verified that the required condition is  
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(16) [ ]ˆ4 / 3 , ,tkω ω ω ω≥ ∀ ∈     

Because this condition is satisfied for the lower bound ˆ 12t kω = , and the LHS in (16) is increasing 

in ω , the condition is always satisfied. 

Given the foregoing, Result 2 continues to hold when the mandate is calibrated so that the 

probability of R&D is lower than under a carbon tax. However, when mandates are chosen so that 

the probability of R&D is higher than under the carbon tax t x= , it is possible a mandate may 

achieve higher expected welfare than a naïve carbon tax. In such a case, the gain to welfare from 

inducing more innovation would need to be weighed against the costs of R&D and distortions to 

static welfare. We will return to this question in the numerical analysis section.  

Competitive Innovation 

Whereas the foregoing single-innovator setting is useful to fix ideas, it is a fact that in reality most 

industries feature multiple firms engaged in competing R&D projects. Modeling such a case is not 

trivial. A possibility is to presume a patent race contest: multiple agents compete for exactly the 

same innovation, and the first to invent obtains a patent that pre-empts all other innovators (Wright 

1983). Because this setting results in a monopoly (only one patented innovation), it would simplify 

the analysis of post-innovation licensing. For the case of renewable energy of interest, however, we 

find it more appealing to presume that competing innovators are actually pursuing alternative 

innovation pathways which, if successful, can all be patented. Whether a (patented) innovation will 

be adopted in the marketplace is a different question, however, as it will depend on how good the 

innovation is relative to other realized innovations. To model this case we postulate the existence of 

a large number of potential innovators, and we assume there is free entry into the renewable energy 

innovation sector. Innovators are ex ante identical and observe a common technological opportunity 

signal ω . If they choose to conduct R&D, they obtain independent θ  draws from ( )f θ ω . The 

innovator who draws the highest θ , denoted 1θ , has the best technology and becomes the exclusive 

licensor to the renewable energy production sector. However, as in Spulber (2013), the choice of 

royalty by the innovator who draws 1θ  is now constrained by the presence of competing innovators. 

Under Bertrand competition, the second-highest θ  draw, denoted 2θ , is the binding constraint. 

Essentially, as compared with the foregoing analysis, 2θ  plays the same role as the pre-innovation 
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production technique 0θ =  for the single innovator case. But, of course, in the competitive 

innovation setting 2θ  is endogenous.  

To characterize the pricing of innovation with multiple innovators, consider first the laissez faire 

setting. The innovator with the ex post best technology 1θ , presuming that 1
ˆθ θ> , sets the per-unit 

license r  to maximize license profit, conditional on the competitive sector adoption, similar to the 

single innovator setting. But here the second best technology 2θ  may limit the price that the 

licensing innovator can extract. Specifically, the innovator with the best technology maximizes 

( )1 2 1r c c rθ− + − , such that 1 2r θ θ≤ − . For low realizations of 2θ , the constraint imposed by the 

second-best technology does not bind, the single innovator results continue to hold, and the 

solution is 2 1
ˆ* ( ) 2r Q θ θ= = − . Given this unconstrained royalty, it is apparent that the constraint 

1 2r θ θ≤ − binds whenever 2 1
ˆ( ) 2θ θ θ> + . In such a case the optimal royalty is 1 2*r θ θ= − , and 

2 2
ˆQ θ θ= − . The best innovator’s maximum profit, denoted 1π , is therefore given by: 

(17) 
( ) ( )

2
1 2 1

1
1 2 2 2 1

ˆ ˆ( ) 4 ( ) 2
ˆ ˆ( ) 2

θ θ θ θ θ
π

θ θ θ θ θ θ θ

 − ≤ += 
− − > +

if 

if 
   

The expected profit of a potential entrant now depends on the distribution of 1θ  and 2θ , which are 

best described by the concepts of “order statistics” widely used in auction theory (Krishna 2010). 

Specifically, given n  innovators, the probability that an innovator’s draw of θ  is the maximum 

draw is equal to the probability that the 1n −  other draws are smaller than θ . Because we have 

assumed a uniform distribution for the innovation projects, this probability equals 1( )nθ ω − . 

Moreover, conditional on a given θ  being the maximum draw, the second highest realization 2θ  is 

the maximum of 1n −  independent draws from the uniform distribution on the support of [ ]0,θ . 

Hence, the second highest realization 2θ  has cumulative distribution function 1
2( )nθ θ −  and density 

function ( ) ( ) 1
2 2( 1) nn θ θ θ −− . Using these results on the distribution of the first and second best 

innovations, we can determine the expected profitability of participating in the R&D contest. 

Specifically, with n  entrants, the expected licensing profit of each innovator, given technological 

opportunity ω , can be written as: 
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(18)     1

1

1 1 12
1 1 2 1

1 2 2 2 1ˆ ˆ( ) 21 2 1

ˆ ˆ( ) 1 1ˆ( , ) ( )( )
2 4

n n nnn d d
ω θ

θ θ θ

θ θ θ θ θ θ
π ω θ θ θ θ θ θ

θ θ θ ω ω

− − −

+

  + − −     = + − −     
      

∫ ∫       

This term integrates over the range of values for θ  that are both feasible and earn positive profit. 

Within the integral, profits are divided into two terms. When 2 1
ˆ( ) 2θ θ θ≤ + , which occurs with 

probability 
1

1 1
ˆ( ) 2

n
θ θ θ

−
 +  , profit is given by the upper branch of equation (17). This is the first 

term under the integral. Conversely, whenever 2 1
ˆ( ) 2θ θ θ> + , profit is given by the lower branch 

of equation (17). This is captured by the second term, itself an integral over possible values of 2θ . 

Hence, equation (18) is the expected licensing profit when there is free entry under laissez faire.  

Competitive Innovation Under a Carbon Tax 

With the naïve carbon tax t x= , the innovator’s problem is similar in structure to the laissez faire 

setting. But here, if the pre-innovation technology is such that Condition 2 applies, it is as if ˆ 0θ = . 

Hence, given 1θ  and 2θ , the best innovator’s licensing profit is: 

(19) ( )
( )

 if 
 if 

2
1 2 1

1 2 2 2 1

2 2
2t

θ θ θπ
θ θ θ θ θ

 ≤= 
− >

    

Given this conditional profit function, equation (18) can be adapted to yield the expected licensing 

profit ( ),t nπ ω  of each innovator facing technological opportunity ω  when there are n  innovators 

engaged in R&D:  

(20) ( ) ( )1

1

2 1 11
1 2 1

1 2 2 2 10 2 2 1

1 1 1,
2 2

n nn

t
nn d d

ω θ

θ

θ θ θ
π ω θ θ θ θ θ

θ θ ω ω

− −− −        = + −                   
∫ ∫    

Performing the integration, and simplifying, yields: 

(21) ( )
( )

( ) ( )
2

1 (1 2)
,

1 2

n

t
n

n
n n n

π ω ω
− −

=
+ +

    

Note that when 1n =  equation (21) reduces to 2 12ω , which is what we found in equation (12) for 

the single innovator licensing profit. Profit is clearly increasing in technological opportunity ω . It is 
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also verified that profit is decreasing in the number of innovators n  (this occurs for two distinct 

reasons: as n  increases, the probability of any one participant drawing the highest innovations 

decreases; and, as n  increases, the expected royalty for any given innovation decreases).   

The equilibrium number of innovators is determined by the zero profit entry condition. In 

equilibrium, noting that n  is an integer, the number of innovators *
tn  satisfies: 

(22) ( ) ( )* *, , 1t t t tn k nπ ω π ω≥ ≥ +     

To emphasize the dependence of the equilibrium number of firms on the R&D outlook parameter 

ω , which represents the asymmetric information between innovators and policy makers, in what 

follows this is denoted * ( )t tn n ω= . From (22) it follows that equilibrium with free R&D entry and a 

carbon tax implies the existence of a sequence of thresholds ˆ ( )t nω  such that there are at least n  

active innovators iff ˆ ( )t nω ω≥ . The threshold levels ˆ ( )t nω  are readily computed from (21) and (22): 

(23) ( 1)( 2)ˆ ( )
1 (1 2)t n

n n nn k
n

ω + +
=

− +
    

Competitive Innovation Under a Mandate 

Given a binding mandate Q , an innovating firm in possession of the best technology 1θ  chooses 

the royalty rate to maximize rQ , such that 2 1 2 2c Q r c Qθ θ− + + ≤ − + . Clearly, the optimal royalty 

is 1 2*r θ θ= −  and the quantity induced is Q .  Therefore, the licensing profit of an innovator with 

the best technology 1θ , facing the second best technology 2θ , is ( )1 2m Qπ θ θ= − . Using the 

probability functions of the best and second-best innovations derived earlier, the expected profit of 

each entrant in the R&D contest, given n  innovators and technological opportunity ω , is: 

(24) ( ) ( )1
1 1

2 1
1 2 2 10 0 2 1

1 1,
n n

m
nn Qd d

ω θ θ θ
π ω θ θ θ θ

θ θ ω ω

− − −     = −    
     

∫ ∫    

After integrating and simplifying, we obtain: 
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(25) ( ) ( )
,

1m
Qn

n n
π ω ω=

+
    

Expected profit is increasing in technological opportunity ω  and the mandate Q , and decreasing in 

the number of innovators. The equilibrium number of innovators * ( )m mn n ω=  satisfies: 

(26) ( ) ( )* *, , 1m m m mn k nπ ω π ω≥ ≥ +     

Similar to the case of the carbon tax discussed in the foregoing, equilibrium with free R&D entry 

and a mandate policy implies the existence of a sequence of thresholds ˆ ( )m nω  such that there are at 

least n  active innovators iff ˆ ( )m nω ω≥ . These threshold levels are computed from (25) and (26): 

(27) ( ) ( 1)ˆm
n nn k

Q
ω +

=     

Expected welfare is still the sum of consumer surplus, producer surplus, and licensing royalties less 

R&D costs and damages from the externality. 12 Assuming the mandate binds, producer surplus is 

unaffected by innovation. However, with competitive innovation, the consumer surplus and 

damages from the externality are impacted by innovation. In the single innovator case, the 

innovating firm appropriated all of the gains from innovation, so that the price of clean fuel was 

unchanged by innovation. Under competitive innovation, on the other hand, the winning innovator 

is only able to appropriate the gains to innovation stemming from improvements over the second 

best innovation. This means that the price of clean fuel falls by 2θ , which also reduces the blend 

price ( )P Q  in equation (4). This leads to an expansion of energy consumption to a new equilibrium 

θ2( )Q  satisfying θ θ=

2 2( ( )) ( ( ))P Q P Q , where θ >2( ) (0)Q Q  and (0)Q  is the pre-innovation 

equilibrium with mandates. Given a binding mandate, this demand expansion is met entirely by 

increased dirty fuel production. Whereas the price decline due to innovation raises consumer 

surplus, it also increases damages from externalities by θ −2( ( ) (0))Q Q x  and whenever 

θ < +2 1( ( ))P Q c x  each additional unit of dirty energy consumed reduces welfare.  

Interestingly, therefore, innovation under a mandate contributes to a form of the so-called rebound 

effect. Prior to innovation a mandate raises the overall cost of energy and, similar to a carbon tax, 
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reduces dirty energy consumption. But as innovation and our assumption of competitive licensing 

reduces the cost of renewable energy, the average cost of energy also falls, which leads to increased 

consumption of dirty energy. In some cases, this creates an incentive to curb innovation by reducing 

the mandate. Indeed, in our numerical simulations, we find that the stringency of the optimal 

mandate when there is free entry is sometimes lower than the optimal mandate when there is a 

single innovator. 

Mandate vs. Carbon Tax with Competitive Innovation 

With competitive innovation, the choice between a carbon tax and a mandate has a greater impact 

on the character of the realized innovation. To begin, it is more likely there will be at least n  

innovators under a carbon tax than under a mandate whenever ˆ ˆ( ) ( )m tn nω ω≥ . By using equations 

(23) and (27), and simplifying, this condition reduces to: 

(28) ( )2
2

1 (1 2) ( 1)n
k n

Q n n n
+

≥
− + +

    

For any given policy the left hand side is fixed, while the right hand side is decreasing in n . This 

implies there is a threshold n̂  such that ˆ ˆ( ) ( )m tn nω ω≥  whenever ˆn n> , where n̂  is defined by: 

(29) ( ) ( )ˆ ˆ21
ˆ ˆ1 2

ˆ ˆ ˆ ˆ ˆ ˆ2 (1 2) ( 1) 1 (1 2) ( 1)n n
n k n

Qn n n n n n−

+ +
≥ ≥

− + − − + +
   

Because ˆ ˆ( ) ( )m tn nω ω≥  for all ˆn n≥ , and given that ˆ ( )m nω  and ˆ ( )t nω  are monotonically increasing 

in n , we conclude with the following result.  

RESULT 3. Whenever technological opportunity exceeds a certain threshold, i.e., ˆˆ ( )t nω ω≥ , 

the number of innovators is (weakly) higher under a carbon tax than under a mandate. 

Conversely, whenever ˆˆ ( )t nω ω≤ , the number of innovators is (weakly) higher under a 

mandate policy than a carbon tax. 

Under either policy, the realized innovation is the best technology drawn by any of the innovators, 

denoted 1θ . Conditional on the technology opportunity parameter ω  and the number of innovators 

n , the expected new technology is 
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(30) [ ] ( )1 10
, ,E n f n d

ω
θ ω θ θ ω θ= ∫             

where ( )1 ,f nθ ω  here is the density function of the distribution of the highest order statistics, 

which can be related to the primitive distribution ( )f θ ω  (Krishna 2010). Because of our assumed 

uniform distribution ( ) 1f θ ω ω= , it follows that  

(31) ( )
1

1
1,

n
f n n θθ ω

ω ω

−
 =  
 

             

Using this density function and performing the integration in (30) we find:  

(32) [ ]1 ,
1

nE n
n

θ ω ω=
+

              

Of course, as discussed in the foregoing, the equilibrium number of innovators will depend on the 

actual technology opportunity ω  and on the policy in place, i.e., ( ) , ,in n i t mω= = . Furthermore, 

from the perspective of a regulator (who does not observe ω ), what is relevant is the expectation of 

the best technology conditional only on the choice of policy, that is  

(33) [ ]1 0

( )
( )

( ) 1
i

i

n
E i dG

n
ω ω

θ ω ω
ω

=
+∫     

This makes it apparent that, given the primitive distribution of technological opportunities ( )G ω , 

the expected technology realized depends only on the number of innovators induced by the policy 

,i t m=  for every opportunity ω . 

Earlier, we showed that, for the single innovator case, setting a mandate equal to / 3Q k=  

ensures that R&D occurs under either policy with equal probability. When / 3Q k= , then 

equation (29) is satisfied by ˆ 1n =  and ( ) ( )t mn nω ω≥  for all ω . By equation (33) this implies the 

expected technology in use will be higher under a carbon tax. 

RESULT 4. When the mandate is such that the probability of R&D under a mandate is equal 

to the probability of R&D under a carbon tax, then the expected technology realized after 

innovation is better under a carbon tax. 
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What if the mandate Q  were tuned so that the expected best technology is the same as under the 

carbon tax?  In order for [ ]1E θ  to be the same under either policy, the mandate must be increased 

from / 3k , so that ˆ ( )m nω  is decreased. Because ( )ˆ ( ) 1m n n n k Qω = + , increasing Q  will decrease 

ˆ ( )m nω  for all n . Specifically, we will now have ˆ ˆ(1) (1)m tω ω<  so that R&D is more likely to occur 

under a mandate than under a carbon tax. Moreover, for [ ]1E θ  to be the same under either policy, 

it cannot be that ( ) ( )m tn nω ω> , where ( )in ω  is the number of innovators under policy i  and the 

best possible technological opportunity. If this were the case, then by Result 3, ( ) ( )m tn nω ω>  for all 

[ ]0,ω ω∈  and by equation (33) [ ]1E θ  would be higher under a mandate. Therefore, in this setting, 

there is some intermediate threshold n̂ , satisfying ˆ1 ( )mn n ω< < , where the number of innovators 

is higher under a carbon tax for ˆˆ ( )t nω ω≥  and higher under a mandate otherwise. This implies: 

RESULT 5. When the mandate is such that the expected best technology is the same under 

either policy, then the distribution of outcomes under a carbon tax is more disperse than 

under a mandate.  

Under a carbon tax there is a higher probability of a very good innovation or none at all. A mandate 

has a higher probability of some innovation, but a lower probability of a very good innovation, since 

it produces weaker incentives to innovate when technological opportunity is very high. 

Numerical Analysis 

The foregoing analysis has provided some interesting qualitative results on the comparison between 

mandates and the alternative of a carbon tax. While these results are illuminating, a limitation is that, 

apart from Results 2, not much has been said about welfare effects. This is not surprising because 

specific welfare conclusions should depend on the particular shape of the demand function ( )P Q  

and on the distribution of technological opportunities ( )G ω . Also, our analytical results have been 

contingent on a few assumptions: that clean energy is on the cusp of being competitive with (taxed) 

fossil fuels (Condition 3), and that the mandate is always binding (Condition 2). In this section we 

relax these conditions and specify explicit functional forms for ( )P Q  and ( )G ω  so that we may 

consider the impacts of the policy instruments of interests in a more general context by means of a 

numerical analysis.  
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Parameterization 

We begin by normalizing 1 100c = , so that a tax on dirty energy can be interpreted as a percent of 

the laissez-faire price level. In the baseline parameterization the externality is calibrated to 20x = , so 

that it amounts to 20% of the private cost of dirty energy,13 and we put 2 120c = , consistent with 

Condition 3 (but this condition does not hold when the marginal damage x is changed from its 

baseline value). Next, we postulate the inverse demand function ( ) ( ln )p Q a Q b= −  or, equivalently, 

that the direct demand function for energy takes the semi-log form:  

(34) lnQ a bp= −                

This is a convenient parameterization which, among other desirable features, can accommodate 

various hypotheses concerning demand elasticity ln lnQ pη ≡ −∂ ∂ . For this function bpη = , hence 

the parameter b  can be varied to implement alternative elasticity values. The parameter a  is 

calibrated so that total demand for energy at price 1p c=  (and at the baseline elasticity value) is equal 

to 100Q = , that is we put 1 ln100a bc= + . This normalization means that we can interpret the 

level of mandates as the percent of total demand under a laissez-faire policy. As for ( )G ω , we assume 

that ω  is distributed on [ ]0,ω  by an appropriately scaled beta distribution. The probability density 

function ( )g ω  is therefore given by: 

(35) ( ) ( ) ( )1 1; , / 1 /g α βω α β ω ω ω ω− −∝ −     

where the parameters α  and β  determine the moments of this distribution and govern its shape. 

This distribution is very flexible, and alternative choices of α  and β  can yield both symmetric and 

skewed density functions. We normalize 120ω =  so that, under all possible innovation, the 

marginal cost of clean energy remains non-negative everywhere. 

Given the foregoing functional form assumptions and parametric normalizations, we still have four 

free parameters that can be varied to gain some insights in the nature of the results. The first of 

these is the elasticity of demand η . Because this value depends on the evaluation price, for clarity 

we will always measure elasticity with reference to the laissez-faire price of energy, where 1p c= . For 

our baseline, we set b  so that 0.5η = . We also consider the cases where 0.25η = and 1η = (these 
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values reflect the widely-held belief that energy demand is inelastic; see Toman, Griffin and Lempert 

2008, p. 18). Second, we vary the cost of the externality x . As noted, for the baseline we set 20x = , 

but we also consider the cases of 10x =  and 40x = . Third, we vary the R&D cost k . To calibrate 

this parameter we relate it to the magnitude of profits that innovation can produce in the laissez-faire 

baseline. Under the highest level of technological opportunity, the expected profit for a single 

innovator, in view of (10) and the chosen normalizations, is equal to ( ) 6,250 9tπ ω = . We consider 

values of k  equal to 3%, 6%, and 12% of this profit level, with 6% corresponding to the baseline. 

Fourth, we vary the shape of the distribution of technological opportunity ( )G ω . The first moment 

of the assumed beta distribution is [ ] ( )E ω ωα α β= + . We set 2α β+ =  and, by varying the 

parameters α  and β , we obtain both different values for [ ]E ω  and different shapes. The baseline 

parameters are 0.5α =  and 1.5β = , which yield [ ] 30E ω = . This is a positively skewed 

distribution (low draws of ω  are more likely than high ones), which reflects the belief that 

technological opportunity is more likely to be consistent with incremental innovation than major 

breakthroughs. The other two cases we consider are 0.25α =  and 1.75β = , which yield [ ] 15E ω =  

(and correspond to an even more positively skewed distribution), and 1α =  and 1β = , which yield 

[ ] 60E ω =  (and correspond to a uniform distribution where high draws of ω  are equally likely as 

low ones). As for the policies t  and Q , for each set of parameters we numerically solve for the 

value of the policy instrument that maximizes welfare, i.e., expected Marshallian surplus (all 

calculation are coded in Matlab). More details on these calculations are available in the 

Supplementary Appendix available online. 

As noted, the optimal mandates and carbon taxes thus computed are second best policies. It is of 

some interest to see how they compare with first best allocations. To compute the latter, we assume 

the social planner can directly choose the number of innovators, upon observing the technological 

opportunity draw ω , and also choose the energy quantities 1Q  and 2Q  upon learning the best 

realized technology θ1 . Optimal energy use equalizes the marginal social cost of each form of energy 

with price, i.e., 2 1 2 1 1 2( )c Q c x P Q Qθ− + = + = + . Note that here welfare depends on θ1  alone, 

which we denote 1( )W θ . Working backward, the optimal number of innovating firms solves  



25 
 

(36) { }10
max ( ) ( , )W f n d nk

n

ω
θ θ ω θ −∫     

If *E W ω    denotes the value function of the program in (36), the expected value of first best 

welfare is given by: 

(37) * *
0

( )E W E W dG
ω

ω ω   =   ∫     

Results  

The experiments we report, as described in the foregoing, encompass 43 81=  different parameter 

combinations. Some basic descriptive results for the baseline parameters are reported in Table 1. For 

the single innovator case the expected number of innovators [ ]E n  can be interpreted as the 

probability that R&D will be conducted. In the baseline setting, under a laissez-faire policy, R&D is 

conducted with probability 0.25 for the single innovator case. The expected quality of innovation 

[ ]1E θ  is 9.58, which improves to 15.93 with competitive innovation. Hence, in either case the 

“average” technology under laissez faire is insufficient to compete with fossil fuels (the minimum 

inventive step here is ˆ 20θ = ). Still, some innovation does take place under laissez-faire, because some 

better-than-average draws are viable. The expected quantity of clean energy consumed is small but 

not negligible, at 2.60 and 8.75 under the single innovator and competitive innovation cases 

respectively (recall that the laissez-faire quantity of total energy consumed was normalized to 100).  

An optimal policy (mandate or tax) raises all these quantities, and also improves welfare. The 

expected quality of innovation [ ]1E θ , as well as the expected quantity of clean energy produced 

[ ]2E Q , is significantly increased for mandates and the carbon tax. Under an optimal mandate, the 

probability of R&D more than triples, relative to the laissez-faire case, and the expected number of 

innovators, given competitive innovation, increases from 1.52 to 2.66. Compared with the carbon 

tax, the mandate induces a greater probability of innovation with a single innovator, but a carbon tax 

has a higher expected number of entrants when there is competitive innovation. As discussed earlier, 

this is because a mandate provides comparatively strong incentives to conduct R&D when 

technological opportunity is low, and this induces firms to enter for more draws of ω  than under a 

carbon tax. The expected profit of R&D increases as ω  rises, but it increases at a faster rate for the 
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carbon tax. In the single innovator case, this is irrelevant, since the firm makes a binary decision to 

conduct R&D or not. But in the competitive innovation case, the higher profits of a carbon tax can 

support more innovators, and this leads to a higher overall expected number of entrants (3.08 in a 

carbon tax, compared to 2.66 under a mandate).  

The expected quality of innovation, however, is highest under a mandate in each case (and in fact, 

higher than the first-best). In the competitive innovation case, this stems from the differential 

impact of entrants. Consistent with Result 5, we note that carbon taxes will tend to have more 

disperse results than the mandate, inducing either many innovators or none at all. Because 

[ ]2 2
1 , 0E n nθ ω∂ ∂ < , the marginal impact of additional entrants under a tax when ω  is high (and 

there are already many firms) is lower than that of additional entrants under a mandate when ω  is 

low (and there are few or no entrants).  

The expected quantity of clean energy produced is higher under a mandate, when there is a single 

innovator, but higher under a carbon tax in the competitive innovation case. However, in both 

cases, welfare is highest under an optimal carbon tax.14 In fact, this is part of a general numerical 

result, and we have found it to be true beyond the baseline.  

RESULT 6 (NUMERICAL). In all parametric cases considered: (a) For both competitive 

innovation and single innovator cases, expected welfare under the optimal mandate is always 

lower than under the optimal carbon tax. (b) For the competitive innovation case, expected 

welfare under the optimal mandate is always lower than under the naïve carbon tax. 

Result 6 refers to 81 different parameter combinations, each of which is solved under single 

innovator and competitive innovation conditions. This result suggests that an optimal mandate, 

while it improves welfare relative to laissez-faire, is inferior to an optimal carbon tax. Upon comparing 

the outcomes associated with the optimal policy tools with first best allocations, we note the 

importance of allowing for an endogenous number of innovators, as done in this paper. The single 

innovator case fares poorly vis-à-vis the first best, whereas the outcomes associated with competitive 

innovation are fairly close to the first best (especially for the carbon tax). 

To gain further insights into the comparison of the policy instruments being considered, Table 2 

illustrates the sensitivity of optimal policies to changes in the calibrated parameters. The first row 

reiterates the optimal policies for the baseline parameterization reported in Table 1. Each 
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subsequent row presumes the same parameters as the baseline, except along one dimension. For 

example, in the second row the elasticity of demand, evaluated at the laissez-faire price, is changed to 

0.25η = . Each column gives the optimal policy value across different policy instruments and 

assumptions about innovation. Looking at the first six columns, it is apparent the optimal mandate is 

much more profoundly affected by the presence or absence of innovation than the optimal carbon 

tax. This suggests the optimal choice of a mandate is sensitive to information about the innovation 

context, about which policy makers might be less informed than innovators. This conclusion is 

buttressed by the last two lines of Table 2, which give the optimal policies when the outlook for 

technological innovation is altered. For example, if this outlook improves from [ ] 30E ω =  to 

[ ] 60E ω = , the optimal mandate increases by 96% in the competitive innovation case, whereas the 

corresponding optimal carbon tax increases only by 6%. Note also that, consistent with Result 1, the 

stringency of the optimal mandate in the presence of a single innovator is always (weakly) greater 

than the optimal mandate without innovation. However, because of the rebound effect under a 

mandate when there is competitive licensing, the result does not carry through to the free entry case. 

In several parameter combinations considered, the stringency of the optimal mandate is reduced 

when we move from a single innovator to the competitive innovation case (although the competitive 

innovation mandate remains larger than the no innovation mandate). 

In view of the fact, illustrated in Table 2, that the optimal carbon tax is less sensitive to the 

innovation context than the optimal mandate, we also compared the performance of the naïve 

carbon tax t x=  (which, strictly speaking, is optimal only absent the prospect of innovation) with 

the optimal mandate. This comparison is of some interest, in an applied policy context, because the 

information requirement to compute this tax level is clearly much lower than required by the optimal 

instruments. As noted in Result 6 (b), it turns out that, for the competitive innovation case, even the 

naïve carbon tax dominates the optimal mandate in terms of welfare.15  

Whereas Table 2 illustrates that the magnitude of an optimal policy is more sensitive to information 

about innovation under a mandate than under a carbon tax, Table 3 shows that welfare outcomes 

are also more sensitive under a mandate. Specifically, in Table 3, for each policy tool, we decompose 

the total welfare change * 0
1 0W W− , where *

1W  is the expected welfare with innovation under the 

optimal instrument choice (mandate or carbon tax, all for the competitive innovation case), and 0
0W  

is welfare under laissez-faire and no innovation. The decomposition identifies the following four 
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additive components: (i) 0 0
1 0W W− , the expected welfare due to innovation under laissez-faire; (ii) 

0
0 0
nW W− , the “static” gain in expected welfare, due to the reduction of the externality, with a 

“naïve” level of the policy instrument (i.e., one that does not account for the prospect of 

innovation); (iii) 0 0
1 0 1 0( ) ( )n nW W W W− − − , the additional gain in expected welfare, relative to laissez-

faire, due to policy-supported innovation (with a naïve level of the instrument); and (iv) *
1 1

nW W− , the 

additional gain in expected welfare from moving to an optimal level of the policy instrument. 

Finally, the last column reports the expected welfare associated with the first-best solution, also 

compared with to the pre-innovation laissez-faire case, 0
0W W∗ − . 

We find that the terms in (i)—the gain in expected welfare from innovation in a laissez-faire setting—

represent the largest components of this decomposition. This feature is of some interest per se, as it 

emphasizes that the market mechanisms that rationalize the use of policy instruments to spur 

innovation also work, to a degree, when no such support is present. Under a carbon tax, the 

components in (ii) and (iii) dominate (iv). By contrast, under a mandate, most of the gain in welfare, 

relative to laissez faire, is associated with (iv) (the terms in (ii) and (iii) are very small for all parametric 

combinations we considered). That is, under a mandate it really is important to tune the policy 

instrument in response to innovation, whereas with a carbon tax most of the welfare gain can be 

achieved with the naïve (static) level of the policy instrument. Indeed, as can be seen by comparison 

with the last column, both a naïve and optimal carbon tax get quite close to the expected welfare for 

the first-best allocation. 

Conclusion 

The direct impact of most environmental policy tools is to steer the economy’s resources away from 

polluting activities and towards cleaner ones. This reallocation of resources, in addition to 

ameliorating the externality effect from a static perspective, also has important dynamic implications 

because it creates R&D incentives (the induced innovation hypothesis). In this paper we have 

studied these issues for the case of “mandates” that establishes minimum use quotas for certain 

goods, a policy tool that is central to U.S. biofuel policies and that is becoming increasing popular in 

renewable energy contexts. We find that mandates can in fact improve upon laissez faire, and that, 

with a single innovator, the prospect of innovation increases the optimal mandate level. In a 

competitive R&D setting, however, it is possible that renewable energy innovation contributes to an 
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increase in the consumption of fossil fuels, and so it may be desirable to reduce the mandate relative 

to the single innovator case. With mandates, the innovation effects are critical and account for most 

of the desirable welfare impacts of this policy tool. Our numerical results, however, indicate that an 

optimally calibrated mandate is much more sensitive than the optimal carbon tax to assumptions 

about the innovation process, such as the nature of competition in innovation and the outlook for 

technological opportunity. In general, the more promising is the outlook for innovation, the higher 

the mandate ought to be. Indeed, the optimal mandate is such that it would typically induce welfare 

losses in the status quo without innovation. In any event, we find that the optimal mandate policy, 

although it is better than laissez faire, is clearly dominated by a carbon tax policy. 

Our numerical results show that the contribution of clean energy innovation to welfare is large 

relative to the static impact of reallocation that environmental policies bring about, highlighting the 

importance of designing policies with innovation in mind. Our analysis also shows that market-

based incentives are conducive to innovation even for the laissez faire scenario. Indirectly, this is a 

reminder that innovation is not a prerogative of renewable energy and clean technologies only: 

market-led innovation in polluting sectors is equally likely, as recent experience with breakthroughs 

in natural gas and shale oil extraction indicate. If anything, this consideration provides greater 

urgency for effective policies supporting pollution reduction and clean energy development: the 

longer renewable energy innovation is underprovided, the more difficult is the task of developing 

clean energy capable of competing with dirty energy (a point emphasized in Acemoglu et al. 2012). 

A novel contribution of our paper, stemming from the explicit stochastic innovation framework that 

we have developed, is to shed some light on the extent to which alternative policies matter for the 

distribution of the quality of innovation. In our setting, innovators observe a signal on the actual 

innovation prospects before making their R&D investment. Compared with a mandate, a carbon tax 

tends to create high profit opportunities when the outlook for R&D turns out to be very good, 

which induces a flurry of activity that makes the realization of the good innovation outcome likely. 

Conversely, when the outlook for R&D is weak, mandates may provide more incentive for 

innovation. Hence, mandates may be a useful policy tool to incentivize R&D when only minor 

innovations are attainable, or when the problem at hand is simply to promote adoption of existing 

technologies, as for first-generation biofuels (e.g., the case of corn-based ethanol mentioned in the 

introduction). But when the goal is to promote breakthrough innovations, as for the case of second-

generation (advanced) biofuels, a carbon tax is preferable to mandates. The analytical and numerical 
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results of our model are therefore quite supportive of the general perspective articulated by Arrow et 

al. (2009) and discussed in the introduction. We also note that our qualitative conclusions appear 

consistent with an emerging empirical literature in renewable energy which shows that quantity-

based policies have positive and statistically significant predictors of innovation only for older 

technologies, whereas price-based policies have positive and statistically significant impact for 

younger technologies (Johnstone, Hascic and Popp 2010). 

Whereas mandates may be of limited effectiveness at spurring innovation for breakthrough 

technologies, their superior ability to induce innovation when incremental innovation is more likely 

may make them desirable in some settings. For example, if learning-by-doing is believed to be an 

important source of technological advance in a field, then it may be more desirable to guarantee that 

there is some kind of innovation, even if it is of low quality, so that the dynamics of learning-by-doing 

can get started. Alternatively, when innovation proceeds in many incremental steps, mandates may 

provide higher incentives than a carbon tax for each step in isolation. On the other hand, knowledge 

spillovers that raise the productivity of R&D in competitive settings (which we have neglected in our 

model) may strengthen one of our results: because a carbon tax features more innovators under 

favorable technological opportunity, spillovers may further increase the dispersion of realized 

innovation. Notwithstanding these qualifications, the general conclusion is that a mandate policy is 

not a very effective tool to promote market-based innovation. Indeed, for the general case of an 

endogenous number of multiple innovators, we find that even the naïve carbon tax, which ignores 

the prospect of innovation, yields higher expected welfare than an optimal mandate.  

 

  



31 
 

Figure 1. Timeline of information and actions 
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Figure 2. Conventional and renewable energy: Innovation and production costs 

 

 

 

 

  

1c

2 2

2

( ,0)C Q
Q

∂
∂

2c

2c θ−

2 2

2

( , )C Q
Q

θ∂
∂

Q

1 1

1

( )C Q
Q

∂
∂

p

θ
θ̂



33 
 

Figure 3. Feasible and unfeasible mandates 
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Table 1. Numerical Results for Baseline 

 Single Innovator Competitive Innovation  

First 

Best 

 Laissez-

Faire 
Mandate 

Carbon 

Tax 

Laissez-

Faire 
Mandate 

Carbon 

Tax 

Optimal 
instrument 

- 18.22 23.41 - 16.00 23.40 - 

[ ]E n  0.25 0.78 0.56 1.52 2.66 3.08 3.33 

( )Var n   0.44 0.42 0.50 3.10 2.83 3.95 4.19 

[ ]1E θ  9.58 15.39 14.28 15.93 24.43 23.91 24.33 

1( )Var θ  20.43 19.67 20.29 29.94 28.00 29.74 29.76 

[ ]2E Q  2.60 18.23 9.64 8.75 21.44 22.93 24.07 

2( )Var Q  6.91 0.63 9.60 18.96 13.68 26.63 29.08 

[ ]E W  123 141 310 402 442 676 695 

( )Var W  414 360 537 977 974 1,098 1,103 

Note: the baseline parameters are 0.5η = , 10.2x c= , 0.06 ( )k π ω= , 0.5α =  and 1.5β = . 
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Table 2. Optimal Policy Instruments under Alternative Assumptions 

 Optimal Mandate Optimal Carbon Tax 

 No 

Innovation 

Single 

Innovator 

Competitive 

Innovation 

No 

Innovation 

Single 

Innovator 

Competitive 

Innovation 

Baseline 2.4 18.2 16.0 20.0 23.4 23.4 

0.25η =   1.1 1.2 13.8 20.0 24.3 23.4 

1η =   5.2 15.0 15.5 20.0 22.5 22.7 

10x =   0.0* 0.0* 0.0* 10.0 13.9 14.4 

40x =  30.3 41.7 46.2 40.0 47.4 42.9 

0.03k π=   2.4 19.1 15.6 20.0 23.9 22.3 

0.12k π=  2.4 18.2 16.0 20.0 23.0 24.0 

[ ] 15E ω =  2.4 9.1 10.0 20.0 21.7 21.8 

[ ] 60E ω =   2.4 31.2 31.3 20.0 29.2 24.8 

Note: Each row changes one parameter, all other parameters as in the baseline. * reflects rounding 

(optimal mandates are strictly positive). 
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Table 3. Welfare Decomposition under Alternative Assumptions (Competitive Innovation) 

 
 Baseline 0.25η =  1η =  10x =  40x =  0.03k π=  0.12k π=  [ ] 15E ω =  [ ] 60E ω =  

First best   695 648 783 419 1,662 781 589 384 1,788 
          
Optimal Mandates 442 427 474 315 1,275 548 312 190 1,440 

   (i) laissez faire innovation 402 402 402 315 577 504 281 174 1,335 

  (ii) static gain, naïve mandate 2 1 12 0 400 2 2 2 2 
 (iii) policy-induced innovation,   
       naïve mandate 3 2 13 0 173 5 4 2 3 

 (iv) naïve to optimal mandate 34 22 47 0 125 36 25 11 99 

          

Optimal Tax 676 630 767 403 1,649 770 556 370 1,763 

   (i) laissez faire innovation 402 402 402 315 577 504 281 174 1335 

  (ii) static gain, naïve tax 97 49 187 25 575 97 97 97 97 
 (iii) policy-induced innovation,   
       naïve tax 170 171 168 55 490 165 169 97 317 

 (iv) naïve to optimal tax 7 8 5 8 7 4 9 3 14 
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Footnotes 

1 Another prominent example of this kind of policy is given by renewable portfolio standards which 

mandate that suppliers of electricity source a set percentage of electricity from renewable sources 

such as solar, wind, biomass, and hydroelectric providers (Holland 2012). As of 2011 they were used 

in 27 US states (Delmas and Montes-Sancho 2011), and six European countries (Haas et al. 2011). 
2 de Gorter, Drabik and Just (2015) provide a useful introduction to previous work and discuss its 

main themes, which have emphasized the impact of expanded biofuel production on commodity 

prices, welfare and the environment, including the controversial issue of indirect land use changes.  
3 Jaffe, Newell and Stavins (2003), Requate (2005), and Popp, Newell and Jaffe’s (2010) provide 

comprehensive reviews.  
4 A portfolio of instruments is bound to outperform any individual policy in our second-best setting 

(Fischer, Parry and Pizer 2003, Fischer and Newell 2008). Nonetheless, here we compare individual 

policy tools because our objective is to clarify the effectiveness of mandates as R&D incentives.  
5 Biglaiser and Horowitz (1994), Parry (1995), and Laffont and Tirole (1996) are notable exceptions. 
6 Indeed, for environmental innovations where the underlying externality is not fully internalized by 

private agents, this under-provision problem is believed to be most acute (Jaffe, Newell and Stavins 

2005). 
7 Thus, as in Denicolo (1999), Laffont and Tirole (1996), Scotchmer (2011), and Acemoglu et al. 

(2012), we model innovation as a replacement technology (rather than an abatement technology). 
8 In the Supplementary Appendix, available online, we also investigate the possibility that an 

innovator may choose multiple independent research projects and show that close analogues for the 

results of this paper hold. 
9 Thus, we model the effect of innovation as a parallel downward shift in the marginal cost curve of 

renewable energy. More generally, both intercept and slopes may be affected. Restricting attention to 

the structure in (3), however, is extremely convenient for the tractability of the analysis we present. 
10 Since Arrow (1962), the innovator’s inability to fully appropriate the social value of the innovation 

has been recognized as an important feature of R&D activities. Postulating that licensing takes place 

via a per-unit royalty is meant to capture this feature. In the Supplementary Appendix available 

online, however, we also consider a two-part tariff and find that our results are robust to this more 

general licensing framework. 
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11 US biofuel mandates provide an example of effective enforcement. Such mandates, as per the 

EISA legislation, are specified in total volume terms. Enforcement then relies on fractional 

requirements set annually by the U.S. Environmental Protection Agency (EPA) and imposed on 

obligated parties (Schnepf and Yacobucci 2013, Lade and Lin Lawell 2016). When exogenous 

contingencies change from year to year, the EPA is expected to adjust such fractional requirements 

to ensure that the statutory total volume mandates are met. 
12 Complete rent dissipation does not occur, despite free entry, because the number of innovators is 

(accurately) modeled as an integer. We provide further detail on computing expected welfare in the 

Supplemental Appendix. 
13 This value for the externality cost is meant to be somewhat representative of estimates for the 

social cost of carbon relative to the cost of transportation fuel. The US government’s estimate for 

the 2015 social cost of carbon, in 2007 dollars, is $37/ton of CO2 if a 3% discount rate is used, and 

$57/ton of CO2 if a 2.5% discount rate is used (U.S. Government 2013, p. 3). These discount rates 

have been criticized for being too high (Johnson and Hope 2012), and so we use the figure 

associated with the lower 2.5% discount rate as our baseline. Converting this estimate to 2015 

dollars yields a social cost of $65/ton of CO2. The carbon emission coefficient is 8.9 kg CO2/gallon 

of gasoline (U.S. EPA 2014), which implies a social cost of carbon is $0.58 per gallon. Taking the 

benchmark price of gasoline to be $3.00/gallon, then the damage imposed by the carbon externality 

is approximately 20% of the cost of fuel, which is reflected in our baseline value of 20x = . 
14 Throughout, welfare is measure as expected Marshallian surplus, normalized to zero at the pre-

innovation, laissez-faire case. 
15 In the single innovator case, expected welfare was higher with the optimal mandate than with the 

naïve carbon tax for 9 of the 81 parameters combinations that we considered.   
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APPENDIX A.  TWO-PART TARIFF LICENSING 

The model in the main text presumes a simple licensing structure whereby the successful innovator 

charges a per-unit royalty r  to producers in the renewable industry. In this Appendix we explore the 

robustness of the results reported in the paper to a more general licensing structure. Specifically, 

here we consider a two-part tariff scheme, such that the innovator charges a per-unit royalty 0r ≥  as 

well as a fixed fee 0F ≥ . Moreover, we explicitly allow the innovator to ration licenses. We show 

that the paper’s results are robust to this change of licensing structure, provided the mandate is 

sufficiently stringent. 

To consider the licensing problem of the innovator in more detail, it is helpful to represent the 

postulated upward-sloping industry supply curve for renewable energy production in terms of 

individual firms’ supply schedules. The formulation that we discuss in this appendix considers an 

industry made up of N  identical price-taking production firms. To yield the industry marginal cost 

structure postulated in the paper, each of these firms has marginal production costs 2mc c Nq= + , 

where we have chosen the units of q  to ensure a firm-level marginal cost slope of N . For a given 

output price p , the firm-level supply curves of these firms are: 

 
( )2p c

q
N
−

=     

Note that, when summed over N  firms, this delivers the paper’s aggregate supply curve 2Q p c= − . 

Here we consider explicitly the more general case of competitive innovation, where licensing of the 

best innovation 1θ  is constrained by the availability of the second-best innovation 2θ . The Bertrand 

competition framework discussed in the text ensures that the latter is freely available. Hence, 

provided 2 2p c θ≥ − , a competitive firm in the renewable energy industry using the second-best 

technology would produce quantity 

( )2 2
2

p c
q

N
θ− +

=  

and earn net returns (quasi rent) of 2
2 2 2 2 2 2( ) 2R pq c q Nqθ ≡ − − +  , that is: 
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( )22 2
2 2

p c
R

N
θ− +

=  

As for the best technology 1θ , under the two-part tariff scheme with a per-unit royalty 0r ≥  and a 

fixed fee 0F ≥ , a firm that licenses this technology would produce quantity  

( )2 1
1

p c r
q

N
θ− − +

=  

and earn net returns 

( )22 1
1 2

p c r
R F

N
θ− − +

= −  

Furthermore, we allow the innovator to possibly restrict the availability of this technology by issuing 

N N≤  licenses. Given that, total industry production is 1 2( )Q Nq N N q= + −  . Hence, for a given 

output price p  the industry supply curve is: 

 ( ) ( )2 1 2 2
N N NQ p c r p c
N N

θ θ−
= − − + + − +
 

  (A.1) 

A.1. Carbon Tax or Laissez Faire 

Under a carbon tax or laissez faire, as discussed in the main text, firms face a horizontal demand 

curve with 1p c t= +  (for laissez faire, 0t = ).  A producing firm will accept a license offer if 1 2R R≥ : 

 ( ) ( )2 2
1 2 1 1 2 2

2 2
c t c r c t c

F
N N

θ θ+ − − + + − +
− ≥   (A.2) 

The optimal two-part tariff therefore solves: 

 1 2 1
0 , 0 , 0

max
N N r F

c t c rN F r
N

θ
< ≤ ≥ ≥

+ − − +  +  
  

   (A.3) 

conditional on the participation constraint in equation (A.2).  

Because the number of licenses has no impact on the output price under a carbon tax, it is optimal 

for the innovator to fully license, so that N N= . At this point, the usual two-part tariff solution 
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applies. The optimal policy sets * 0r =  to maximize each firm’s producer surplus and then 

appropriates as much of it as feasible: 

 ( ) ( )2 2
1 2 1 1 2 2*

2 2
c t c c t c

F
N N

θ θ+ − + + − +
= −   (A.4) 

To make this solution comparable to the paper’s analysis, set 2 1c c t= +  (consistent with Condition 

3 in the paper). The total licensing profit with a two-part tariff, *II
t NFπ = , is then:  

 ( )( )2 2
1 2 1 21 2

2 2
II
t

θ θ θ θθ θ
π

+ −−
= =    (A.5) 

For comparison, the licensing profit with the royalty-only license in the paper [equation (19)] is: 

 ( )
( )

 if 
 if 

2
1 2 1

1 2 2 2 1

2 2
2t

θ θ θπ
θ θ θ θ θ

 ≤= 
− >

   (A.6) 

It can be verified the innovator makes strictly more from a two-part tariff for any realization of 1θ  

and 2θ . Meanwhile, the renewable energy firms are no worse off, because they capture the producer 

surplus they would have achieved freely using the second-best technology 2θ  – the same as in the 

main text of paper. However, aggregate welfare is improved by the efficient use of renewable energy 

(because marginal cost with no royalty is equated to price). 

The expected two-part tariff licensing profit ( ),II
t nπ ω  of each innovator facing technological 

opportunity ω  when there are n  innovators engaged in R&D can then be expressed as:  

 ( ) 1
1 12 2

2 1 2 1
2 10 0 2 1

1 1,
2

n n
II
t

nn d d
ω θ θ θ θ θ

π ω θ θ
θ θ ω ω

− − −−     =      
      

∫ ∫   (A.7) 

Upon integration, we obtain: 

 ( ) ( ) ( )
2

,
1 2

II
t n

n n
ωπ ω =

+ +
   (A.8) 

For comparison, the corresponding expression with per-unit royalties in the main text of the paper 

[equation (21)] is: 



6 
 

 ( )
( )

( ) ( )
2

1 (1 2)
,

1 2

n

t
n

n
n n n

π ω ω
− −

=
+ +

   (A.9) 

and so ( ) ( ), ,II
t tn nπ ω π ω> . Combined with the free-entry (zero profit) condition, we can assert 

there will be at least n  entrants, under a carbon tax with a two-part tariff, whenever ( )ˆ II
t nω ω> , 

where ( )ˆ II
t nω  is: 

 ( ) ( ) ( )ˆ 1 2II
t n n n kω = + +    (A.10) 

A2. Mandates 

To simplify notation for this section, define:  

1 2θ θ∆ ≡ −    

2 2c c θ≡ −  

N Nα ≡   

Using this notation, the producing firms’ returns from using technologies 2θ  and 1θ  , therefore, are:  

2

2
( )

2
p cR

N
−

=   and  
2

1
( )

2
p c rR F

N
− + ∆ −

= −  

Under a binding mandate, the participation constraint still requires 1 2R R≥ , and therefore r ≤ ∆ .  

Furthermore, for any given royalty rate [ ]0,r ∈ ∆ , the maximum fee that can be extracted is    

2( ) 2( )( )
2

r p c rF
N

∆ − + − ∆ −
= .  

Now, with N N≤  licenses the innovators licensing profit is ( )1N rq Fπ = +  where 1q  is the output 

of a firm that licenses the technology 1θ , that is: 1 ( )q p c r N= − + ∆ − .  Hence, collecting terms: 

2( )( ) ( )
2

N rr r p c
N

π
 ∆ − = ∆ − + + − ∆ 
  



       (A.11)  
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As for the output price, under a mandate this price depends on how many firms license the 

technology. Inverting the aggregate supply curve of the renewable fuel industry in (A.1) yields the 

industry marginal cost curve which, when evaluated at the binding mandate Q , yields the “supply” 

price faced by producers in this industry for any feasible ( , )r N . With the current notation, this 

supply price under a binding mandate is: 

 ( )Np c r Q
N

= − ∆ − +


      (A.12) 

Using (A.12) in (A.11), and recalling that the fraction of firms licensing the new technology has been 

defined as N Nα ≡  , the licensing profit with the two-part tariff can be expressed as: 

2 2
2( ) ( )

2
rQ rπ α α α∆ −

= ∆ + − ∆ ∆ −    (A.13) 

The innovator’s problem is to maximize this licensing revenue over [0,1]α ∈   and  [0, ]r ∈ ∆ . The 

Kuhn-Tucker conditions are  

  if      ;     if      ;    if  0 * (0,1) 0 * 0 0 * 1π π πα α α
α α α
∂ ∂ ∂

= ∈ ≤ = ≥ =
∂ ∂ ∂

  

  if      ;     if      ;    if  0 * (0, ) 0 * 0 0 *r r r
r r r
π π π∂ ∂ ∂
= ∈ ∆ ≤ = ≥ = ∆

∂ ∂ ∂
  

where 

2 2( ) 2 ( )
2

rQ rπ α
α
∂ ∆ −

= ∆ + − ∆ ∆ −
∂

 

2r
r
π α α∂
= − + ∆

∂
 

Quite clearly, * 0α =  cannot be a solution. If *r = ∆  then / 0π α∂ ∂ >  and it must be that * 1α = , 

and if  * 1α =  then / 0rπ∂ ∂ ≥  requires that *r = ∆ . Hence, the corner solution ( )* 1, *rα = = ∆  

does satisfy the K-T conditions, i.e., it identifies a local maximum. The other possible solution is for 

both *r  and *α to be interior. In such a case, then from / 0rπ∂ ∂ =  we have *r α= ∆ . From 

(A.13), licensing profit, conditional on *r α= ∆ , can be written as: 
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2 2(1 )

2
Q α απ α ∆ −

= ∆ +         (A.14) 

The FOC for an interior solution then requires  

2 2
2(1 ) (1 ) 0

2
Qπ α α α

α
∂ ∆ −

= ∆ + − ∆ − =
∂

      (A.15) 

with the SOSC  

( )
2

2
2

2 3 0π α
α
∂

= −∆ − <
∂

 

Using the quadratic formula, from the FOC we find 

24 16 12 (2 ) 2 4 1 2 1
6 3 9 3

Q Qα ∆ ± ∆ − ∆ + ∆  = = ± − + ∆ ∆ 
  

Note that for there to exist an interior local maximum solution we need 

 4 1 2 1 0 6
9 3

Q Qθ
θ

 − + > → ∆ > ∆ 
 

Furthermore, because the SOSC for such a putative optimum requires 2 3α < , we take the smaller 

root, and thus the interior solution of interest is: 

 2 1 24 3 1
3 3

Qα  = − − + ∆ 
         (A.16) 

Note that, from (A.15), 
1

0
α

π
α =

∂
>

∂
, which again shows that the corner solution 1α =  is always a 

local maximum.  Hence, the question is whether the interior local maximum solution in (A.16) is a 

global maximum. For this, we need that 1α απ π =>


, that is: 

2
22 1 2 1 1 24 3 1 4 3 1

3 3 3 32 1 24 3 1
3 3 2

Q Q
Q Q Q

      − − + ∆ + − +      ∆ ∆          − − + ∆ + > ∆  ∆  
        

or, equivalently: 
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2 2 22 4 3 1 1 4 3 1 9Q Q Q       − − + + − + >       ∆ ∆ ∆       
 

Some further algebra can reduce this condition for an interior global maximum to  

8Q∆ >  

Hence, for 1 2( ) 8Qθ θ∆ ≡ − > , profit is maximized by a partial licensing solution N N< . 

Conversely, if  1 2( ) 8Qθ θ− ≤  then licensing profit under a mandate is maximized by the full 

licensing solution considered in the paper, that is 1 2r θ θ∗ = −  , N N=  and * 0F =  . 

Note that, in the logic of the model, 1 2θ θ ω− ≤ . Also, Condition 2 in the paper requires   

2 1( )c c Qω − − ≤ . Hence, the condition 1 2 2 1( )Q c cθ θ− ≤ + −  is already satisfied. Thus, the full 

licensing solution will obtain if ( )2 1 8Q c c Q+ − ≤ , or ( )2 1 / 7c c Q− ≤ . Hence, a sufficient 

condition to rule out any scope for incomplete licensing and/or a two-part tariff, under a mandate, 

would be to replace Condition 2 in the text with the following:  

Condition 2A. The mandate is large enough to always bind and require full licensing under a 

two-part tariff, i.e., ( ) ( )[ ]2 1 2 1max , / 7Q c c c cω≥ − − − .  

A.3. Comparing Carbon Taxes and Mandates under a Two-Part Tariff 

In conclusion, the qualitative results obtained with the per-unit royalty model of the paper carry 

through under the more general two-part tariff licensing scheme. Use of a two-part tariff improves 

the licensing prospect of an innovator under a carbon tax, but it is far less likely to do so under a 

binding mandate. Indeed, Condition 2A would rule out any scope for incomplete licensing and/or 

two part tariff under a mandate. In such a case, it is more likely there will be at least n  innovators 

under a carbon tax than under a mandate whenever ˆ ˆ( ) ( )II
m tn nω ω≥ . By using equations (A.10) and 

the definition of ( )ˆm nω  given in the paper, and simplifying, this condition reduces to: 

 
2 2

2
( 1)

k n
Q n n

+
>

+
   (A.17) 

which can be compared with the condition in equation (28) in the paper. For any given policy, the 

left hand side of (A.17) is fixed, while the right hand side is decreasing in n . This implies there is a 
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threshold n̂  such that ˆ ˆ( ) ( )m tn nω ω≥  whenever ˆn n> , where n̂  is now defined by: 

 
2 2 2

ˆ ˆ1 2
ˆˆ ˆ ˆ ˆ( 1) ( 1)

n k n
n n Q n n

+ +
≥ ≥

− +
    (A.18) 

Because ˆ ˆ( ) ( )m tn nω ω≥  for all ˆn n≥ , and given that ˆ ( )m nω  and ˆ ( )t nω  are monotonically increasing 

in n , we conclude that RESULT 3 in the paper still applies, except that ˆ ( )II
t nω  replaces ˆˆ ( )t nω . The 

rest of the results also go through with little alteration, except that the mandate level such that 

( ) ( )ˆ ˆ1 1t mω ω=  (the single innovator case) would now be 2 / 3Q k=  (rather than / 3Q k=  for 

the case analyzed in the text). 
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APPENDIX B.  MULTIPLE-PROJECT INNOVATORS 

The model of the paper has developed an “idea” framework where each active firm pursues a 

distinct R&D project upon incurring the fixed cost k . As noted by a reviewer, one might want to 

consider the possibility that the investment level of the firm is itself endogenous. Following Spulber 

(2013), this can be accomplished in our framework by allowing firms to undertake multiple R&D 

projects. In this Appendix we develop this approach for the case of a monopolist innovator. We 

find that the core results reported in the paper also obtain in this alternative model where a 

monopolist has the ability to select n  distinct research programs, each of which costs k  to 

implement and yields an independent draw from ( )|F θ ω .  

B.1. Mandates 

Under a mandate, the monopolist’s licensing revenues are 1Qθ  where 1θ  is the maximum of n  

draws from ( )|F θ ω . Given the order statistics discussed in the paper, expected licensing revenues 

from n  projects are: 

 ( )
1

0

1,
n

I
m n Qn d

ω
θπ ω θ θ
ω ω

−
 =  
 ∫    (B.19) 

Performing the integration yields: 

 ( ),
1

I
m

nQn
n

π ω ω=
+

   (B.20) 

The expected increase in profit from the thn  project is: 

 ( ) ( ) ( ), , 1
1

I I
m m

Qn n
n n

π ω π ω ω− − =
+

   (B.21) 

Note this is the same as the expected profit under a competitive innovation contest, as in equation 

(25) in the paper. The monopolist will increase the number of R&D projects until: 

 ( ) ( ) ( ) ( ), , 1 , 1 ,I I I I
m m m mn n k n nπ ω π ω π ω π ω− − ≥ ≥ + −   (B.22) 
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Under a binding mandate, a monopolist will choose the same number of projects as under the 

competitive innovation case analyzed in the main text. Profit maximization implies there are at least 

n  active R&D projects iff ( )ˆ I
m nω ω≥  where: 

 ( ) ( )1ˆ I
m

n n
n k

Q
ω

+
=    (B.23) 

To compute expected welfare in this case, we modify equation (7) in the text by using equation 

(B.20) for the expected licensing profits I
mE π   : 

 [ ]
ˆ ( 1)

0 0 0 ˆ ( )1
( )

1

I
m
I
m

n nm m m
nn

nQE W S X nk dG
n

ω

ω
ω ω

+

=

 = + Π − + − + 
∑ ∫   (B.24) 

where n  is the solution to (B.22) under the best possible research outlook ω .  

We can now show that RESULT 1 in the paper continues to hold under the current multiple-project 

framework. When the innovator can choose the number of R&D projects, an optimal mandate in 

this setting solves: 

 [ ] 0 0 0 0
Im m m mEE W S X

Q Q Q Q Q

π ∂∂ ∂ ∂Π ∂  = + − + =
∂ ∂ ∂ ∂ ∂

  (B.25) 

The last term, the impact of changing the mandate on expected licensing profit, captures the role of 

innovation. Differentiating the last term in (B.24) yields:1 

ˆ ( 1)
ˆ ( )1

( )
1

I
m
I
m

I n nm
nn

E n dG
nQ

ω

ω

π
ω ω

+

=

 ∂   =
+∂ ∑ ∫           (B.26) 

which makes it apparent that the last term in (B.25) is positive. Using the same line of argument as 

for the proof of RESULT 1 in the main text, it then follows that RESULT 1 continues to hold when 

the monopolist can choose the number of R&D projects to initiate. 

                                                           
1 The use of Leibniz rule in taking this derivative also yields additional terms because changing Q  

changes the limits of integration ˆ ( )I
m nω  and ˆ ( 1)I

m nω + . But it is verified that these terms wash out, 
essentially as a consequence of the envelope theorem (the innovator selects the optimal number of 
projects for any given Q ), such that only the direct effect remains. 
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B.2. Carbon Tax 

Under a carbon tax, the monopolist’s licensing revenues are 2
1( 2)θ  where 1θ  is the maximum of n  

draws from ( )F θ ω . Expected licensing revenues from n  projects are: 

 ( )
2 1

0

1,
2

n
I
t n n d

ω
θ θπ ω θ

ω ω

−
   =    
   ∫    (B.27) 

Performing the integration yields: 

 ( ) ( )
2

,
4 2

I
t

nn
n
ωπ ω =
+

   (B.28) 

The expected increase in profit from the thn  project is: 

 ( ) ( ) ( )( )
2

, , 1
2 2 1

I I
t tn n

n n
ωπ ω π ω− − =

+ +
  (B.29) 

After the first project, this is less than the expected profit under competitive innovation. Unlike the 

case of binding mandates, therefore, with a carbon tax a monopolist will engage in less R&D than a 

competitive sector. The monopolist will increase the number of R&D projects until: 

 ( ) ( ) ( ) ( ), , 1 , 1 ,I I I I
t t t tn n k n nπ ω π ω π ω π ω− − ≥ ≥ + −   (B.30) 

Profit maximization implies there are at least n  active R&D projects iff ( )ˆ I
t nω ω≥  where: 

 ( ) ( )( )ˆ 2 2 1I
t n k n nω = + +    (B.31) 

To compute expected welfare in this case, we modify equation (13) in the main text by using 

equation (B.28) for the expected licensing profits, noting that the producer surplus of renewable 

energy producers can be shown to be equal to ( )2 8( 2)n nω + : 

 [ ] ( ) ( )
2 2ˆ ( 1)*

0 ˆ ( )1
( )

4 2 8 2

I
t
I
t

n n

nn

n nE W S nk dG
n n

ω

ω

ω ω ω
+

=

 
= + + − + + 

∑ ∫   (B.32) 

We can now show that a version of RESULT 2 stated in the paper continues to hold, specifically:  
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RESULT B2. When the mandate is such that the probability of some R&D under a mandate 

is equal to the probability of some R&D under a carbon tax, then expected welfare is higher 

with the carbon tax. 

As in Result 2 in the text, the focus here is on ensuring the same probability—under either a carbon 

tax or a mandate—that at least one R&D project is undertaken. To prove RESULT B2, note that 

/ 3Q k=  continues to ensure that ˆ ˆ(1) (1)I I
m tω ω= . As argued with RESULT 2 in the paper, for the 

proof it suffices to show the component of expected welfare due to innovation is higher under a 

carbon tax than under a mandate, that is: 

 
( ) ( )

2 2ˆ ˆ( 1) ( 1)
ˆ ˆ( ) ( )1 1

( ) ( )
4 2 8 2 1

I It m
t m
I I
t m

n nn n

n nn n

n n nQnk dG nk dG
n n n

ω ω

ω ω

ω ω ω ω ω
+ +

= =

   + − ≥ −   + + +  
∑ ∑∫ ∫    (B.33) 

where tn  and mn  are the optimal number of projects under the carbon tax and the mandate, 

respectively, for the best possible research outlook ω , and where, as noted, ˆ ˆ(1) (1)I I
m tω ω= . As in the 

paper, if the left-hand integrand is everywhere greater than the right-hand side equation (B.33) will 

hold. Let in∗  ( ,i t m= ) denote the number of R&D projects initiated for a given ω . Then a 

sufficient condition to ensure the desired condition is that, conditional on a given ω , the profit 

obtained under a carbon tax exceeds the profit under a mandate (i.e., ignoring producer surplus), 

that is: 

 
( )

2

14 2
t m

t m
mt

n n Qn k n k
nn

ω
ω

∗ ∗
∗ ∗

∗∗
− ≥ −

++
   (B.34) 

To establish this result we proceed through the following chain of inequalities: 

 
( ) ( )

2 2

14 2 4 2
t m m

t m m
mt m

n n n Qn k n k n k
nn n

ω ω
ω

∗ ∗ ∗
∗ ∗ ∗

∗∗ ∗
− ≥ − ≥ −

++ +
 (B.35) 

The first of these inequalities asserts that the expected licensing profit under a carbon tax (the left-

hand-side term) is no lower when the innovator uses the number of projects tn∗  that is actually 

optimal under this policy, rather than relying on another number of projects such as mn∗ — an 

obvious implication of profit maximization. As for the second inequality in (B.35), we can show that 
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this will hold for / 3Q k=  which, as noted above, is the mandate level that ensure that carbon tax 

and mandates yield the same probability of one R&D project, i.e.,  ˆ ˆ(1) (1)I I
m tω ω= . With / 3Q k= , 

the second inequality in (B.35) simplifies to: 

 4( 2)
31

m

m

n k
n

ω
∗

∗

+
≥

+
   (B.36) 

The right-hand side of equation (B.36) obtains a maximum of 12k  at 1mn∗ = . Of course, for 

12kω <  the optimal number of R&D projects is zero under both a carbon tax or a mandate, and 

so either policy obtains the same (zero) profit. This establishes that the inequality chain in (B.35) 

holds everywhere, and consequently the desired condition in (B.34) also holds, which suffices to 

prove RESULT B2. 

B.3. Comparing Carbon Taxes and Mandates 

Some of the qualitative results obtained in the competitive innovation section of the paper have an 

analogous version in the current setting with a multi-project monopolist. In particular, we can verify 

the following version of Result 3 reported in the paper: 

RESULT B3. Whenever technological opportunity exceeds a certain threshold, ˆ ˆ( )I
t nω ω≥ , the 

number of projects undertaken by the innovator is (weakly) higher under a carbon tax than 

under a mandate. Conversely, whenever ˆ ˆ( )I
t nω ω≤ , the number of projects is (weakly) higher 

under a mandate policy than a carbon tax. 

Recall that it is more likely there will be at least n  innovators under a carbon tax than under a 

mandate whenever ˆ ˆ( ) ( )I I
m tn nω ω≥ . By using equations (B.23) and (B.31), and simplifying, this 

condition reduces to: 

 
2 2

2
2 ( 1)

k n
Q n n

+
>

+
   (B.37) 

which can be compared with the condition in equation (28) in the paper. For any given policy, the 

left hand side of (B.37) is fixed, while the right hand side is decreasing in n . This implies there is a 

threshold n̂  such that ˆ ˆ( ) ( )I I
m tn nω ω≥  whenever ˆn n> , where n̂  is now defined by: 
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2 2 2

ˆ ˆ1 2
ˆ ˆ ˆ ˆ( 1) 2 ( 1)
n k n

n n Q n n
+ +

≥ ≥
− +

   (B.38) 

Because ˆ ˆ( ) ( )I I
m tn nω ω≥  for all ˆn n≥ , and given that ˆ ( )I

m nω  and ˆ ( )I
t nω  are monotonically increasing 

in n , we conclude that RESULT 3B applies. Following the same argument as in our paper, we can 

also prove RESULT 4 and RESULT 5 obtain. 
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APPENDIX C.  DETAILS OF THE NUMERICAL ANALYSIS 

The numerical analysis was coded in Matlab (a copy of our code is archived at 

https://github.com/mattsclancy/Environmental_Innovation ). The basic building block of our 

numerical strategy is the computation of the expected value and variance of many variables of 

interest. For any given set of primitive parameters (81 different parameter combinations were 

analyzed, as discussed in the text), there are three correlated random variables: ω  (technological 

opportunity), 1θ  (the best realized technology), and 2θ  (the second-best realized technology). Of 

course, if there are more than 2 entrants, there are more than two realized draws of θ , but only the 

best and second-best have any impact on outcomes. The variables of interest (for example, welfare, 

clean energy quantity 2Q , number of innovators, etc.) depend on the realizations of these random 

variables. Let ( )1 2, ,y ω θ θ  denote a variable of interest that depends on the realized values of ω , 1θ

, and 2θ . Using the orders statistics from section 4 of the paper and assuming ω  follows a beta 

distribution on the interval [ ]0,ω  , the expected value of ( )1 2, ,y ω θ θ  is: 

 ( )[ ] ( ) ( )
1

1 2 1 2 1 2 1 2
0 0 0

1, , , , , ,E y y d d d
B

ωωθ

ω θ θ ω θ θ ψ ω θ θ θ θ ω= ∫ ∫ ∫


   

where  

( ) ( ) ( ) ( ) ( )1
2 1

1 2
2 1 1

1
, , 1

n nn nω ω α βω ωθ θ ω ωψ ω θ θ
θ θ θ ω ω ω

−   −          ≡ −                       
 

Here, B  is a factor associated with the beta distribution that normalizes its integral to 1, and ( )n ω  

denotes the dependence of n  (the number of entrants) on ω  via the free-entry condition. The 

variance is computed similarly, by replacing ( )1 2, ,y ω θ θ  with ( )2
1 2, ,y ω θ θ .  

To compute ( )[ ]1 2, ,E y ω θ θ , the integral in the above equation is discretized and approximated by 

the following: 

 ( )[ ] ( ) ( )
( ){ }1 2

1 2 1 2 1 2
, ,

, , , , , ,E y y
ω θ θ

ω θ θ ω θ θ ω θ θ≈ Ψ∑    

where 

https://github.com/mattsclancy/Environmental_Innovation
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( ) ( ) ( ) ( ) ( )1
2 1

1 2
2 2 1 1 1

11 1 1, , 1
n nn n

B

ω ω α βω ωθ θ ω ωω θ θ
θ θ θ ω ω ω

−   −          Ψ ≡ −         Θ Θ              
 

The function ( )1 2, ,y ω θ θ  is evaluated at a set of grid points ( )1 2, ,ω θ θ  each of which is weighted 

by a discretized probability (the terms B , 1Θ , and 2Θ  insure each discrete probability distribution 

adds up to one). The set of ω , 1θ , and 2θ  to be evaluated form a grid of evaluation points, 

determined in the following way. 

First, divide the interval [ ]0,ω  into 100 equal segments. The midpoint of each segment forms a set 

of ω ’s. Next, for the Nth  ω , if ( ) 0n ω > , divide the interval [ ]0,ω  into N  equal segments. Thus, 

the first ω  “divides” the interval [ ]0,ω  into one segment, the second divides the corresponding 

interval into two segment, the third into three segments and so forth. The midpoint of each section 

forms a set of 1θ ’s associated with each ω . If ( ) 0n ω = , we only consider the point ( ),0,0ω , 

which is given a probability weight  

1 1
B

α βω ω
ω ω

   −   
   

  

(implicitly, we assume when ( ) 0n ω = , 1 2 0θ θ= =  with certainty). If ( ) 1n ω > , then for the Nth

1θ , divide the interval [ ]10,θ  into N  equal segments. The midpoint of each segment form a set of 

2θ ’s associated with the ( )1,ω θ  pair. If ( ) 1n ω = , we only evaluate the point ( )1, ,0ω θ , which is 

given a probability weight  

( ) ( )
1

1 1

1 1 1
nn

B

ω α βω θ ω ω
θ ω ω ω

        −      Θ          
  

(implicitly, we assume when ( ) 1n ω = , 2 0θ =  with certainty).  

A critical variable of interest is welfare, given that this is the target of optimal policies. In our partial 

equilibrium setting, welfare is the sum of consumer surplus, licensing revenues, clean producer 

profits, and government revenues (when there is a tax), less damages from the externality and the 

costs of R&D. Taking these terms in turn, to compute consumer surplus ( )1 2, ,S ω θ θ , we note that 
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the assumed semi-log demand function lnQ a bP= −  can be derived from the quasilinear utility 

function ( )U m u Q= + , where m   is the numeraire and ( )u Q  takes the form  

( ) ( )( ) 1 lnu Q Q b a Q= + − .  

Because the inverse demand function with the semi-log parameterization is ( )( ) lnP Q a Q b= − , 

then the net consumer surplus reduces to ( )u Q PQ Q b− = . Hence, the consumer surplus of 

interest is computed as 

 ( ) ( )1 2 1 2, , , ,S Q bω θ θ ω θ θ=    

where ( )1 2, ,Q ω θ θ  is the total consumption of energy (dirty and clean). If there is a binding 

mandate, this quantity is determined by equation (11) in the paper, after substituting in a functional 

form for ( )P Q : 

 
( ) ( )

( ) ( )( ) ( )
1 2 1 2

1 2 1 1 2
1 2 1 2

ln , , , ,
, ,

, , , ,
a Q Q Q Qc c r Q

b Q Q
ω θ θ ω θ θ

θ ω θ θ
ω θ θ ω θ θ

− −
= + − + +    

Given the royalty rate ( )1 2, ,r ω θ θ , the above is solved numerically. When 2Q Q> , as happens 

when taxes or subsidies are used or when innovators choose or are forced to exceed the mandate, 

we set the costs of clean energy production, with the royalty rate included, equal to residual demand 

(given by equation 4 in the paper).  

To find the royalty rate ( )1 2, ,r ω θ θ  we solve for the profit maximizing royalty that satisfies the 

constraints 2Q Q≥  and 1 2r θ θ≤ − . For many values of ω , 1θ , and 2θ  there are non-convexities 

(for example, the winning innovator might choose a very different royalty depending on whether he 

decides to exceed the mandate or not), and we always select the global maximum. 

Given the choice of royalty and 2Q , total energy demanded Q  can be inferred and the remaining 

quantities making up welfare are easily computed. Licensing revenues are 2rQ , clean producer 

profits are 2
2 / 2Q , dirty energy supplied is 1 2Q Q Q= − , government revenues equal 1tQ , and 

externality damages are 1xQ .  
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The cost of R&D is given by ( )n kω . To compute ( )n ω  we solve for the largest value of n  such 

that the following condition is satisfied: 

 ( ) ( )
1 1 1

2 1
1 2 2 1 2 2 1

2 10 0

1 1, , , ,
n nnr Q d d k

ωθ θ θ
ω θ θ ω θ θ θ θ

θ θ ω ω

− −  −       >     
       

∫ ∫    

As explained earlier, we use a discrete approximation for the integral on the left-hand side of the 

above equation evaluated at a grid of points  and . For any , the set of evaluation points is drawn 

with the same methodology as above. 

Finally, to determine the optimal policy, we use a golden section search algorithm. For the initial 

bounds of a carbon tax, we look at the interval , for the mandate, we use as an upper bound the 

maximum feasible mandate (so that consumers consume 100% clean energy) given no innovation. 
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